博碩士論文 952206068 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:18.216.104.106
姓名 馬大為(Ta-Wei Ma)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 成長於(001)矽基板之銻化銦薄膜熱處理研究
(Effect of Thermal Annealing on InSb Grown by MBE on Si substrate)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文是探討以分子束磊晶法在(001)矽基板上成長銻化銦薄膜,經由熱退火處理後,其電性與微結構的改變,並利用一多晶模型擬合以解釋其電子傳輸機制。我們利用分子束磊晶法在矽基板上成長銻化銦薄膜,觀察溫度對成長模式之影響,並藉由兩階段的成長方法改善銻化銦薄膜特性,使其能夠在極薄的厚度下得到高電子遷移率與較平整的表面形貌。在熱退火的實驗中,經由改變退火溫度與退火時間,觀察銻化銦薄膜的變化,實驗結果顯示,原生之銻化銦薄膜成長於矽基板時,係呈現多晶的結構,晶粒邊界散射機制為限制載子遷移率之主要因素,而試片經由熱退火處理後,晶粒增大,可改善電子遷移率幅度高達3倍以上。
摘要(英) In this research, we investigate the electrical and structural properties of ultrathin InSb films grown on Si substrate by molecular beam epitaxy. The effects of thermal annealing on the ultrathin InSb films are also examined. A polycrystalline scattering model is used to explain the transport properties of the as-grown samples and annealed samples.
Growth temperature is an essential growth parameter for high quality InSb films, especially when grown on lattice mismatched Si substrates. A two-step growth method is adopted to obtain InSb films with good material quality and smooth surface. The films are subject to thermal annealing at different temperature and durations.
It is found that the InSb films prepared in this work are of polycrystalline nature. Grain boundary scattering is therefore the dominant carrier scattering mechanism, which limits the electron mobility of these InSb films. After thermal annealing, the increase of grain size and reduction of grain boundary result in improved electron mobility. An optimized annealing condition, i.e. 500 oC for 5 minutes, electron mobility is increased by as much as three times.
關鍵字(中) ★ 銻化銦
★ 半導體材料
★ 熱退火處理
★ 散射機制
關鍵字(英) ★ InSb
★ Semiconductor
★ Thermal annealing
★ Scattering mechanism
論文目次 中文摘要..................................................................................................... I
英文摘要....................................................................................................II
目錄.......................................................................................................... III
圖目錄....................................................................................................... V
表目錄.....................................................................................................VII
第一章 導論
1.1 前言.......................................................................................... 1
1.2 成長於高度晶格不匹配的銻化銦材料之發展..................... 3
1.3 研究架構................................................................................. 6
第二章 試片製備
2.1 成長溫度變化與薄膜特性探討............................................. 7
2.2 兩階段成長........................................................................... 14
第三章 熱退火處理對於銻化銦薄膜之特性變化
3.1 前言........................................................................................ 18
3.2 熱退火結果與分析............................................................... 20
第四章 薄膜內部散射機制分析
4.1 薄膜散射機制之擬合與分析............................................... 35
4.2 Levinson 模型........................................................................ 40
第五章 總結.......................................................................................... 46
參考文獻.................................................................................................. 49
參考文獻 [1] J.-I. Chyi, S. Kalem, N. S. Kumar, C. W. Litton and H. Morkoc, ”Growth of InSb and InAs1-xSbx on GaAs by molecular beam epitaxy”, Appl. phys. Lett., 53(12), pp1092~1094, 1988
[2] J.-I. Chyi, D. Biswas, S. V. lyer, N. S. Kumar and H. Morkoc, ”Molecular beam epitaxial growth and characterization of InSb on Si”, Appl. Phys. Lett., 54(11), pp1016~1018, 1989
[3] K. Kanisawa, H. Yamaguchi and Y. Hirayama, ”Two-dimensional growth of InSb thin films on GaAs(111)A substrates”, Appl. Phys. Lett., 76(5), pp589~591, 2000
[4] K. Murata, N.B. Ahmad, Y. Tamura, M. Mori, C. Tatsuyama and T. Tambo, “Low-temperature growth of InSb(111) on Si(111) substrate”, J. Crystal Growth, 301-302, pp203~206, 2007
[5] X. Weng, N. G. Rudawski, P. T. Wang and R. S.Goldman, “Effects of buffer layers on the structural and electronic properties on InSb films”, J. Appl. Phys., 97,pp 043713-1~043713-6, 2005
[6] M. Mori, N. Fujimoto, N. Akae, K. Uotani, T. Tambo and C. Tatsuyama, “Heteroepitaxy of InSb films grown on a Si(001) substrate with AlSb buffer layer”, J. Crystal Growth, 286, pp218~222, 2006
[7] Masahiro Tomisu, Narumi Inoue and Yoshizumi Yasuoka, “Annealing effect of vacuum evaporated InSb thin films”, Vacuum, 49(3), pp239~242, 1996
[8] Y. Yasuoka, T. Okuda and N. Inoue, “n-InSb Point Contact Warm Carrier Infrared Laser Detectors”, Jpn. J. Appl. Phys., 27, ppL886~L888, 1988
[9] G. C. Osbourn, “InAsSb strained-layer superlattices for long wavelength detector applications”, J. Vac. Sci. Technol., B2, pp176~178, 1984
[10]M. Mori, D. M. Li, M. Yamazaki, T. Tambo, H. Uebe and C. Tatsuyama , “Heteroepitaxial growth of InSb on Si(001) surface via Ge buffer layers”, Appl. Surf. Sci., 104-105, pp563~569, 1996
[11] Masafumi Yamaguchi, Akio Yamamoto, Masami Tachikawa, Yoshio Itoh, and Mitsuru Sugo, “Defect reduction effects in GaAs on Si substrates by thermal annealing”, Appl. Phys. Lett., 53(23), pp2293~2295, 1988
[12] Robert E. and Reed Hill, “Physical Metallurgy Principles (3rd)”, New York: Van Nostrand, pp227~269, 1972
[13] W. A. Soer, “Interaction between Dislocations and Grain Boundary”, University of Press. Groningen, pp5~13, 2006
[14] S. O. Kasap, “Principles of Electronic Materials and Devices” (3rd), McGraw Hill, pp156~159, 2006
[15] A. Medvid, L. L. Fedorenko and V. Snitka, “The Mechanism of Generation of Donor Centres in p-InSb by Laser Radiation”, Appl. Surf. Sci., 142, pp280~285, 1990
[16] J.-I. Chyi, “Molecular beam epitaxial growth and characterization of Indium Antimonide on Gallum Arsenide”, Ph.D. Dissertation, University of Illinois at Urbana-Champaign, pp 41~43, 1990
[17] Jasprit Singh, “Electronic and Optoelectronic Properties of Semiconductor Structure”, Cambridge, pp181~263, 2003
[18] R. Fischer, H. Morkoc, D. A. Neumann, H. Zabel, C. Choi, N. O. Otsuka, M. Longerbone and L. P. Ericksen, “Material properties of high-quality GaAs epitaxial layers grown on Si substrates”, J. Appl. Phys., 60(5), pp1640~1647, 1986
[19] K. Adomi, S. Strite, and H. Morkoc, “Antiphase-domain-free GaAs grown on pseudomorphic Si(100) surfaces by molecular beam epitaxy”, Appl. Phys. Lett., 56(5), pp469~471, 1990
[20] A. Georgakilas, P. Panayotatos, J. Stoemenos, J.-L. Mourrain, and A. Christou, “Achievements and limitations in optimized GaAs films grown on Si by molecular-beam epitaxy”, J. Appl. Phys., 71(6), pp2679~2701, 1992
[21] K. Hansen, E. Peiner, G.-P. Tang, A. Bartels, and A. Schlachetzki, “Scattering mechanisms and defects in InP epitaxially grown on (001) Si substrate”, J. Appl. Phys., 76(8), pp4705~4712, 1994
[22] Sadao Adachi, “Properties of Group-IV, III-V and II-VI Semiconductors”, Wiley, pp319~320, 2005
[23] Nicky Chau-Chun Lu, Levy Gerzberg, Chih-Yuan Lu and James D. Meindl, “A Conduction Model for Semiconductor Grain Boundary Semiconductor Barriers in Polycrystalline-Silicon Films”, IEEE Trans. Electron Devices, ED-30(2), pp137~149, 1983
[24] T. I. Kamins, “Hall Mobility in Chemically Deposited Polycrystalline Silicon”, J. Appl. Phys., 42(11), pp4357~4365, 1971
[25] Teruo Katoh, “Temperature-Independent Carrier Mobility in Large-Grain Poly-Si Transistors”, IEEE Trans. Electron Devices, 41(9), pp1672~1674, 1994
[26] Yoshihiro Morimoto, Yushi Jinno, Kyoko Hirai, Hidenori Ogata, Tutomu Yamada, and Kiyoshi Yoneda, ”Influence of the Grain Boundaries and Intragatin Defects on the Performance of Poly-Si Thin Film Transistors”, J. Electrochem. Soc., 144(7), pp2495~2501, 1997
指導教授 綦振瀛(Jen-Inn Chyi) 審核日期 2010-7-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明