博碩士論文 953202018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:3.138.135.4
姓名 蕭年宏(NIEN-HUNG HSIAO)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 砂土受剪時音波與振波之傳遞探討
(Transmission of sound waves and vibration waves in sand under direct shear test)
相關論文
★ 動力夯實之有效影響深度與地表振動阻隔研究★ 砂土層中潛盾機地中接合漏水引致地層下陷之案例探討
★ 動力壓密工法施工引致地表振動之阻隔★ 音波式圓錐貫入試驗於土層界面判定之應用
★ 孔洞開挖後軟弱地盤之沉陷行為★ 超載對打設排水帶後軟弱地盤壓密行為之影響
★ 山岳隧道湧水處理之研究★ 砂土中基樁側向位移之改良研究
★ 圓錐貫入試驗中土壤音壓之研究★ 水泥混合處理砂質土壤液化特性之改良研究
★ 扶壁改善深開挖擋土壁體變形行為之研究★ 微音錐應用於土壤音射特性之研究
★ 黏性土壤受定量擠壓變形後之力學行為★ 黏土中短樁側向位移之改良研究
★ 砂土經水泥改良後之力學性質★ 黏土中模型樁側向位移之改良研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要係利用微音器及加速度計量得之波傳訊號,對砂土層
中因振動或變位所產生之音波與振波之傳播特性,進行探討與測試。
本研究利用改良式直接剪力試驗儀,以西螺砂作為試驗土樣,在
直剪盒上裝入微音器及加速度計,以應力控制方式施加剪力,進行一
系列的定荷重剪力試驗。本研究探討位移與剪應力、音波及振波之相
關性等,藉以瞭解砂土受剪力時音波及振波訊號發生特性。結果顯示
當剪應力到達試體破壞前剪應力的40%~50%會產生較大的音壓。之
後隨著剪動位移,產生較小的音波及振波。砂土相對密度越高在相同
正向應力下產生的音波及振波越大。在相同的條件下,剪應力增量越
大,產生的音波及振波越大。另外,本研究進行了淺層土層中音波及
振波現地量測試驗。音源的產生是引爆一個埋設深度為80 m 重達七
百五十公斤的乳膠炸藥,至於量測方式係將微音器及加速度計埋置於
距音源水平距離20 m 處,埋置深度為30 cm。結果顯示此次試驗中
之音波係伴隨振波同時出現。說明當土層發生變位或錯動時,只要振
動的量夠大,音波便能藉由振波向外傳遞至較遠處。
摘要(英) This research used wave signals measured from microphones and
accelerometers to investigate transmission properties of sound waves and
vibration waves generated by shock vibration or shear displacement in
sand layer.
This research carried out a series of constant loading shear tests by
means of a modified direct shear apparatus. Set a microphone and a
accelerometer in the direct shear box to measure sound pressure
accelerate. Siluo sand was used in the tests and the shear stress was
applied with air cylinder. The signals of vibration and sound wave were
measured from the direct shear tests. The results showed that when the
shear stress has reached 40%~50% of soil strength, the higher sound
pressure would appear. Then of values of vibration and sound would
become smaller with the increase of shear displacement. For the sand
with higher relative density, the vibration and sound wave would be
getting higher with the same normal stress. Under the same condition,
higher shear stress increment will cause higher vibration and sound wave.
In addition, field test was performed in this research. The sound and
vibration waves were caused by the explosion of dynamite of 750 kg
which was imbedded at depth of 80 m. The microphone and the
accelerometer were set apart from the sound source of 20 m, and these
sensors were imbedded at depth of 30 cm. From the results of the
experiment, the sound and vibration waves were appeared at the same
time. If the generated energy of slide or movement of sand is large
enough, the sound waves may transmit away with the vibration waves to
a farther distance simultaneously.
關鍵字(中) ★ 振波
★ 音波
★ 波傳
關鍵字(英) ★ sound wave
★ vibration wave
★ wave propagation
論文目次 中文摘要...............................................................................................................II
英文摘要..............................................................................................................III
目錄..................................................................................................................... IV
照片目錄............................................................................................................VII
表目錄...............................................................................................................VIII
圖目錄................................................................................................................. IX
符號說明...........................................................................................................XIII
第一章 緒論..........................................................................................................1
1.1 研究動機與目的.........................................................................................1
1.2 研究方法.....................................................................................................1
1.3 論文內容.....................................................................................................2
第二章 文獻回顧.................................................................................................3
2.1 聲音量測技術於大地工程之應用.............................................................3
2.1.1 音波基本參數........................................................................................3
2.1.2 音波傳遞速度........................................................................................5
2.1.3 音波訊號之分析....................................................................................8
2.1.3.1 時間域分析.....................................................................................8
2.1.3.2 頻率域分析.....................................................................................9
V
2.1.4 波傳衰減特性......................................................................................10
2.1.4.1 空氣中音波衰減特性...................................................................10
2.1.4.2 土層中振波衰減特性...................................................................11
2.1.5 音射現象..............................................................................................13
2.2 音波之應用.................................................................................................14
2.2.1 音源之定位..........................................................................................14
2.2.1.1 區域定位法...................................................................................14
2.2.1.2 到達時間差定位法......................................................................15
2.2.1.3 三軸後德格蘭姆法......................................................................18
2.2.2 不穩定邊坡之音波量測.....................................................................20
2.2.3 微音錐貫入試驗..................................................................................21
2.2.4 土石流地聲特性之研究.....................................................................23
2.3 砂土中音波與振波傳遞之研究................................................................25
2.4 未來應用...................................................................................................26
第三章 試驗土樣、儀器設備及試驗方法.......................................................43
3.1 試驗土樣....................................................................................................43
3.2 試驗儀器與相關設備................................................................................43
3.3 試驗方法及步驟.......................................................................................49
3.3.1 直接剪力試驗中砂土之音波及振波波速量測試驗方法.................50
VI
3.3.2 裝置防砂罩微音器之校正................................................................51
3.3.3 音波及振波現地量測試驗.................................................................52
3.4 音波訊號處理...........................................................................................53
3.4.1 背景噪音之影響與校正....................................................................54
3.4.2 取樣定理.............................................................................................55
3.4.3 快速傅立葉轉換.................................................................................56
第四章 試驗結果與分析...................................................................................69
4.1 直接剪力試驗中音波及振波在砂土訊號傳遞之量測...........................69
4.1.1 背景噪音的濾除.................................................................................69
4.1.2 音壓振幅之分析.................................................................................70
4.1.3 音壓與剪動位移之關係....................................................................71
4.1.4 加速度與剪動位移之關係................................................................72
4.1.5 剪應力與剪動位移之歷時變化........................................................73
4.1.6 音壓及加速度與正向應力之關係....................................................73
4.2 音波及振波現地量測試驗結果................................................................74
第五章 結論........................................................................................................96
5.1 結論............................................................................................................96
5.2 建議............................................................................................................97
參考文獻..............................................................................................................98
參考文獻 1. 日本機械学会,岩石破坏力學とその応用,第101-115 頁(1989)。
2. 日本土質工學會,土質試驗法,第447 頁(1979)。
3. 方治國,「音洩檢測原理應用」,檢測科技,第十六卷,第一期,
第4-9 頁(1998)。
4. 古秉弘,「砂土中音波傳遞與量測之研究」,碩士論文,國立中央
大學土木工程學系,中壢(2005)。
5. 李佳龍,「音射定位法於岩石材料之應用」,碩士論文,國立成功
大學資源工程學系,第51-58 頁,台南 (2003)。
6. 吳志鴻,「淺層砂土中音波傳遞特性之研究」,碩士論文,國立中
央大學土木工程學系,中壢 (2006)。
7. 孟河清譯,(蘇)B.C. 斯捷潘諾夫著「泥石流與泥石流體的基本特
性及其量測方法」,科學技術文獻出版社重慶分社(1986)。
8. 徐萬樁,噪音與振動控制,協志工業叢書,台北(1975)。
9. 張哲胤,「乾燥砂土中音波及振波之傳遞特性」,碩士論文,國立
中央大學土木工程學系,中壢 (2007)。
10. 黃清哲、謝正倫、鄭友誠、尹孝元、許世盛、蔡玫諼,「土石流地
聲特性之實驗研究」,中國土木水利工程學刊,第十六卷,第一期,
第53-63 頁 (2004)。
99
11. 陳正興,朱惠君,「南科園區地盤振動衰減參數之量測」,南部
科學園區振動防治策略研討會論文集,台南,第151-170 頁
(2000)。
12. 陳精日、章書成、葉明富,「泥石流地聲特性及NJ-2 型無線遙側
泥石流警報器的研製」,第二屆全國泥石流學術會議論文集,第
36-41 頁(1991)。
13. 葉逸彬,「圓錐貫入試驗中砂土音射特性之研究」,碩士論文,國
立中央大學土木工程學系,中壢(2004)。
14. 廖志信,「岩石材料中音射發生源之位置探測研究」,碩士論文,
國立成功大學土木工程研究所,台南 (1993)。
15. 趙晉棠,通信原理,全華科技圖書股份有限公司,台北(1995)。
16. 蔡雅惠,「基樁承受側向荷載後之表面摩擦特性」,碩士論文,國
立中央大學土木工程學系,中壢 (2004)。
17. 蔡國隆、王光賢、涂聰賢,聲學原理與噪音量測控制,全華科技
圖書股份有限公司,台北(2005)。
18. 鄭玉旭、王偉哲、陳博亮,「應用主動波偵測法於土石流發生前之
預測之初步研究」,聯合學報,第24 期,第125-135 頁(2004)。
19. 蘇德勝,噪音原理及控制,臺隆書店,台北(2003)。
20. Baker, L.J., and Winbow, G.A., Multipole P-wave logging in
formations altered by drilling,” Geophysics, Vol. 53, No. 9, pp.
100
1207-1218 (1988).
21. Beard, F.D., “Predicting Slides in Cut Slopes,” Western Construction,
pp. 72 (1961).
22. Bolt, B.A., Earthquakes: A Primer, Freeman, San Francisco,
pp.241(1978).
23. Chen, S.T., “Full acoustic wave train in a laboratory model of a
borehole,” Geophysics, Vol. 47, No. 11, pp. 1512-1520 (1982).
24. Clayton, C.R.I., Simons, N.E., and Matthews, M.C., Site Investigation,
Intl Pubns, Westport (1982).
25. Dixon, N., Hill, R., and Kavanagh, J., “Acoustic Emission Monitoring
of Slope Instability : Development of an Active Waveguide System,”
Proceedings of the Institution of Civil Engineers : Geotechnical
Engineering, Vol. 156, No. 2, pp. 83-95 (2003).
26. Ekimov, A., and Sabatier, J.M., “Vibration and sound signatures of
human footsteps in building,” Journal of the Acoustical Society of
America, Vol. 120, No. 2, pp. 762-768 (2006).
27. Ewing, W.M., and Jardetzky, W.S., Elastic Waves in Layered Media,
McGraw-Hill Book Co., New York, pp. 380-381 (1957).
28. Gutowski, T.G. and Dym, C.L., “Propagation of Ground Vibration: A
Review,” Journal of Sound and Vibration, Vol. 49, No. 2, pp. 179-193
(1976).
29. Hardy, H.R., “Application of acoustic techniques to rock mechanics
research,” Acoustic Emission, ASTM STP505, American Society for
Testing and Materials, pp. 41-83 (1972).
30. Hassall, J.R., and Zaveri, K., Acoustic Noise Measurements,
Brüel&Kjær, Nærum, Denmark, pp.18-20(1979).
101
31. Hou, Z., Hera, A., and Shinde, A., “Wavelet-based structural health
monitoring of earthquake excited structures,” Computer-Aided Civil
and Infrastructure Engineering, Vol. 21, No. 4, pp. 268-279 (2006).
32. Hough, S.E., Earthshaking science: what we know (and don't know)
about earthquakes, Princeton University Press, U.S.A., pp. 43-46
(2002).
33. Kageyama, K., Murayama, H., Uzawa, K., Ohsawa, L., Kanai, M.,
Akematsu, Y., Nagata, K., and Ogawa, T., “Doppler effect in flexible
and expandable light waveguide and development of new fiber-optic
vibration/acoustic sensor,” Journal of lightwave Technology, Vol. 24,
No. 4, pp. 1768-1775 (2006).
34. Kano, Y., Mori, J., Fujio, R., Ito, H., Yanagidani, T., Nakao, S., and
Ma, K. F., “Heat signature on the Chelungpu fault associated with the
1999 Chi-Chi, Taiwan earthquake,” Geophysical Research Letters, Vol.
33, L14306 (2006).
35. Kim, D.S., and Lee, J.S., “Propagation and attenuation characteristics
of various ground vibrations,” Soil Dynamics and Earthquake
Engineering, Vol. 19, No. 2, pp. 115-126 (2000).
36. Koerner, R.M., McCabbe, W.M., and Lord, A.E., “Acoustic Emission
Behavior and Monitoring of Soils,” Acoustic Emission in
Geotechnical Engineering Practice, ASTM STP 750, American
Society for Testing and Materials, pp. 93-141 (1981).
37. Kramer, S.L., Geotechnical Earthquake Engineering, Prentice-Hall,
Upper Saddle River, N.J. (1996).
38. Lecture Note, Basic Concept of Sound, Brüel&Kjær, Nærum,
Denmark, pp.6-8 (1998).
102
39. Lord, H., Gatley, W.S., and Evensen, H.A., “Noise Control for
Engineers,” McGraw-Hill Inc (1980).
40. Luo, X., Haya, H., Inaba, T., and Shiotani, T. “Seismic diagnosis of
railway substructures by using secondary acoustic emission.” Soil
Dynamics and Earthquake Engineering, Vol. 26, No. 12, pp.
1101-1110 (2006).
41. Massarsch, K.R., “Acoustic penetration testing,” Proceedings of the
4th Geotechnical Seminar, Field Instrumentation and In-Situ
Measurements, Nanyang Tech. Inst., Singapore (1986).
42. Muromachi, T., “Phono-sounding apparatus-discrimination of soil type
by sound,” Proceedings of the First European Symposium on
Penetuation Testing, Amsterdam, ESOPT-I, Vol. 21, pp. 110-112
(1974).
43. Nikolaev, A.V., Belyakov, A.S., Lavrov, V.S., and Zhigglin, A.D.,
“Geoacoustic monitoring as a means for investigating the state of the
lithosphere and for earthquake forecasting,” Acoustical Physics, Vol.
51, No. SUPPL. 1, pp. S122-S130 (2005).
44. Richart, F.E., Woods, R.D., and Hall, J.R., Vibrations of Soils and
Foundations, Prentice-Hall, Englewood Cliffs, N.J. (1970).
45. Robertson, P.K., “In situ testing and its application to foundation
engineering,” Canadian Geotechnical Journal, No. 23, pp. 573-594
(1986).
46. Ronnie, K.M., and Paul, McIntire., “Acoustic emission testing,”
Nondestructive Testing Handbook, 2nd Ed., Vol. 5 (1986).
47. Scott, I.G., “Basic acoustic emission,” Nondestructive Testing
Monographs Tracts, Vol. 6, Gordon and Breach Science Publishers
103
(1991).
48. Smith, B.J., Peter, R.J., and Owen, S., Acoustic and Noise Control,
Longman Group Limited, U.K., pp. 27-34 (1982).
49. Spanner, J.C., Brown, A., Hay, D.R. Notvest, K., and Plooock, A.,
“Foundationals of acoustic emission testing,” Nondestructive Testing
Handbook, 2nd Ed., Vol. 5, pp. 11-44 (1987).
50. Starr, E.A., “Noise measurement,” Noise Control Engineering, Vol. 9,
No. 3, pp. 100-108 (1977).
51. Tanimoto, K., Takahashi, S., Kaneko, T., and Shiota, K., “Impulsive
breaking wave forces on an inclined pile exerted by random waves.”
Proceedings of the Coastal Engineering Conference, Vol. 3, pp.
2282-2302 (1987).
52. Technical Document, Microphone Handbook, Brüel&Kjær, Nærum,
Denmark, pp.2-8(1996).
53. Tringale, P.T., “Soil identification in-situ using an acoustic cone
penetrometer,” Ph.D. Dissertation, University of California, Berkeley
(1983).
54. Villet, W.C.B., “Acoustic emission during the static penetration of
soils,” Ph.D. Dissertation, University of California, Berkeley (1981).
55. Winbow, G. A., “Theoretical study of acoustic S-wave and P-wave
velocity logging with conventional and dipole sources in soft
formations,” Geophysics, Vol. 53, No. 10, pp. 1334-1342 (1988).
56. Worth, C.P., “Interpretation of In Situ Soil Test,” 24th Rankine Lecture,
Geotechnique, Vol. 34, pp. 449-489 (1984).
指導教授 張惠文(HUI-WEN ZHANG) 審核日期 2009-1-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明