參考文獻 |
參考文獻
〔1〕 許書王,「台灣地區鹼質與粒料反應抑制策略之研究」,國立中央大學土木工程研究所,博士論文,中壢,1999年。
〔2〕 李釗、饒正、張道光、陳桂清,「花蓮港區混凝土構造物鹼質與粒料反應之調查研究」,台灣省交通處港灣技術研究所,1998年。
〔3〕 李釗、許書王,「高雄港區混凝土構造物鹼質與粒料反應調查與潛勢分析研究」,交通部運輸研究所港灣技術研究中心期末報告,2000年。
〔4〕 柯正龍,「台中、基隆及蘇澳港港區混凝土構造物鹼質與粒料反應調查研究」,國立中央大學土木工程研究所,碩士論文,中壢,1999年。
〔5〕 陳仁達,「花東地區鹼-粒料反應及防治方法」,國立中央大學土木工程研究所,碩士論文,中壢 ,1999年。
〔6〕 王淑慧,「台灣地區岩石之鹼-粒料反應潛能研究」,國立中央大學土木工程研究所,碩士論文,中壢 ,1999年。
〔7〕 劉志堅,「台灣地區粒料活性探討暨鹼質與粒料反應電化學維修策略研究」,國立中央大學土木工程研究所,博士論文,中壢,2003年。
〔8〕 陳登義,「以電化學技術抑制鹼質與粒料反應之基礎研究」,國立中央大學土木工程研究所,碩士論文,中壢,1999年。
〔9〕 蘇銘鴻,「電滲法運用於抑制鹼質與粒料反應之基礎研究」,國立中央大學土木工程研究所,碩士論文,中壢,2002年。
〔10〕 王韡蒨,「台灣地區活性粒料之檢測方法研究」,國立中央大學土木工程研究所,碩士論文,中壢,2003年。
〔11〕 Stanton, T.E., “Influence of Cement and Aggregate on Concrete Expansion,”Engineering News-Record, pp.59-61, 124 Feb., 1940.
〔12〕 Gillott, J.E.,“Alkali-aggregate reaction in concrete,” Engineering Geology, Vol.9, pp.303-326, 1975.
〔13〕 Fournier, B., and Bérubé, M.A., “Alkali-Aggregate Reaction in Concrete: a Review of Basic Concepts and Engineering Implications,” Canadian Journal of Civil Engineering, Vol.27, Number 2, pp.167-191, April 2000.
〔14〕 Fournier, B., and Bérubé, M.A., “Alkali-Aggregate Reaction in Concrete: a Review of Basic Concepts and Engineering Implications,” Canadian Journal of Civil Engineering, Vol.27, Number 2, pp.167-191, April 2000.
〔15〕 Metha, P.K., “Concrete structure, properties, and materials,” pp.145-150,1986.
〔16〕 Diamond, S., “A review of the alkali-aggregate reaction and expansion mechanism, alkali in cement and in concrete pore solutions,”Cement and Concrete Research, Vol. 5, pp.329-346, 1975.
〔17〕 Hobbs, D.W.,“Expansion of concrete due to alkali-silica reaction, The Structural Engineer, Cement, Concrete, and Aggregate, England, 1984.
〔18〕 British Cement Association, “The diagnosis of alkali-silica reaction-report of a working party,”pp.36, 1992.
〔19〕 Lenzner, D., and Ludwig, V., “The alkali aggregate reaction with opaline sand stone from Schleswig-Holstein,” Proceedings of the 4th International Conference on Effects of Alkalis in cement and concrete, Purdue University,pp. 11-34, 1978.
〔20〕 Stark, D., and Depuy, G., “Alkali-silica reaction in five dams in southwestern United States,”In Proceedings of the Katharine and Bryant Mather International Conference on Concrete Durability, pp.1759-1786, April/May 1997.
〔21〕 Touma, W.E., Fowler, D.W., and Carrasquillo, R.L., “Alkali-silica reaction in portland cement concrete: testing methods and mitigation alternatives,” Research Report ICAR 301-1F, 2001.
〔22〕 Hichard, H., Stark, D, and Diamond, S., “Alkali-silica reactivity: an overview of research,”SHRP-C-343, Strategic Highway Research Program, National Research Council, Washington, D.C., 1993.
〔23〕 Sakaguchi, Y., Takakura, M., and Kitagawa, A., “The inhibiting effect of lithium compounds on alkali-silica reaction,” Proceeding of the 8th International Conference on Alkali-Aggregate Reaction, Kyoto, pp. 229-234, 1989.
〔24〕 Thomas, M.D.A, Hooper, R., and Stokes, D, “Use of lithium-containing compounds to control expansion in concrete due to alkali-silica reaction,” Proceeding of the 11th International Conference on Alkali-Aggregate Reaction, Quebec, Canada, pp. 783-792, 2000.
〔25〕 Durand, B., “More results about the use of lithium salts and mineral admixtures to inhibit ASR in concrete,” Proceeding of the 11th International Conference on Alkali-Aggregate Reaction, Quebec, Canada, pp. 623-632, 2000.
〔26〕 Hichard, H., Stark, D, and Diamond, S., “Alkali-silica reactivity: an overview of research,” SHRP-C-343, Strategic Highway Research Program, National Research Council, Washington, D.C., 1993.
〔27〕 Page, C.L., and Yu, S.W., “Potential effects of electrochemical desalination of concrete on alkali-silica reaction,” Magazine of concrete research, Vol. 47, No, 170, pp. 23-31, 1995.
〔28〕 Stokes, D.B., “Use of lithium to combat alkali silica reactivity,” Proceeding of the 10th International Conference on Alkali-Aggregate Reaction, Melbourne, Australia, pp. 862-867, 1996.
〔29〕 McCoy, W.J., and Caldwell, A.G., “New approach to inhibiting
〔30〕 alkali-aggregate expansion,” Journal of the American Concrete Institute, Vol. 22, No. 9, pp. 693-706 (1951).
〔31〕 Diamond, S., “Unique response of LiNO3 as an alkali silica reaction-preventive admixture”, Cement and Concrete Research, Vol. 29, pp.1271-1275 (1999).
〔32〕 Lawrence, M., and Vivian, H.E., “The reactions of various alkalis with silica,” Australian Journal of applied science, Vol.12, pp.96-103 (1961).
〔33〕 Sakaguchi, Y., Takakura, M., and Kitagawa, A., “The inhibiting effect of lithium compounds on alkali-silica reaction,” Proceeding of the 8th International Conference on Alkali-Aggregate Reaction, Kyoto, pp. 229-234 (1989).
〔34〕 Thomas, M.D.A, Hooper, R., and Stokes, D,“Use of lithium-containing compounds to control expansion in concrete due to alkali-silica reaction,”Proceeding of the 11th International Conference on Alkali-Aggregate Reaction, Quebec, Canada, pp. 783-792 (2000).
〔35〕 Diamond, S., “Unique response of LiNO3 as an alkali silica reaction-preventive admixture”, Cement and Concrete Research, Vol. 29, pp.1271-1275 (1999).
〔36〕 Blackwell, B.Q., Thomas, M.D.A., and Sutherland, A., “Use of lithium to control expansion due to alkali-silica reaction in concrete containing U.K. aggregates,” Durability of concrete proceedings Fourth CANMET/ACI International Conference, ACI SP 170-34, pp. 649-663, 1997.
〔37〕 Stark, D., and Depuy, G., “Alkali-silica reaction in five dams in southwestern United States,” In Proceedings of the Katharine and Bryant Mather International Conference on Concrete Durability, pp.1759-1786, April/May 1997.
〔38〕 ASTM C 1202-97, “Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration,” Annual Book of ASTM Standards, Section 4, Vol.04.02, 1999.
〔39〕 Dhir, R.K., ”Rapid Estimation of Chloride Diffusion Coefficient in Concrete,” Magazine of Concrete Research, Vol. 42, No. 152, pp. 177~185, 1990.
〔40〕 Halamickova, P., ”Water Permeability and Chloride Ion Diffusion in Portland Cement Mortars: Relationship to Sand Content and Critical Pore Diameter,” Cement and Concrete Research,” Vol. 25, No. 4, pp. 790~802, 1995.
〔41〕 McGrath, P.F., and Hooton, R.D., “Influence of Voltage on Chloride Diffusion Coefficients from Chloride Migration Tests,” Cement and concrete Research, Vol. 26, No. 8, pp.1239~1244, 1996.
〔42〕 Halamickova, P., ”Water Permeability and Chloride Ion Diffusion in Portland Cement Mortars: Relationship to Sand Content and Critical Pore Diameter,” Cement and Concrete Research,” Vol. 25, No. 4, pp. 790~802, 1995.
〔43〕 Luping, T., “Chloride Binding Capacity and Binding Isotherms of OPC Pastes and Mortars,” Cement and Concrete Research. Vol. 23, pp. 247~253, 1993.
〔44〕 Page, C.L., Short, N.R., and El Tarras, A., “Diffusion of Chloride Ions in Hardened Cement Paste,” Cement and Concrete Research, Vol. 11, No. 3, 395~406. 1981.
〔45〕 Whitmore, D., and Abbott, S., “Use of an applied electric field to drive lithium ions into alkali-silica reactive structures,” Proceeding of the 11th International Conference on Alkali-Aggregate Reaction, Quebec, Canada, pp.1089-1098, 2000.
〔46〕 Mindess. S., Young. J. F. and Darwin, D. Concrete. 2rd ed., Prentice-Hall, Inc., Upper Saddle River, New Jersey, pp. 372. 2002. |