摘要(英) |
This research is using friction drilling to get a hole, then using different fluids to cool the hole wall simultaneously. The friction drilling processes are using a high speed rotating conical tool to penetrate a thin workpiece and create a bushing without generating chips. After completing the friction drilling processes, the material is still on high temperature, and then use different fluid to cool the hole wall simultaneously in order to get heat treatment results.
This research is using friction drilling to get a hole, the workpiece is AISI 304 stainless steel, and using different fluids to cool the hole wall simultaneously, including pure water, quenching oil, air, and nitrogen gas. Collocating the working parameter we necessary, and different cooling delay time experimenting with friction drilling. We observe the hole wall after the friction drilling, hole roundness, hole surface roughness, surface hardness, bushing length, and hardness layers depth in experiments. In order to get the better parameters of the hole drilling and surface quality.
The results of experimental show that cooling the hole whenever using pure water, quenching oil, air, and nitrogen gas, it can get the best surface roughness when the rotating speed is 3600 rpm. Although the results in air and nitrogen gas are having better effects in roughness and roundness, but their hardness layer depth and hardness aren’t better than pure water and quenching oil. After friction drilling using quenching oil cooling, the hole is better than the other three. When the cooling delay time is 0.2 second, the workpiece get a protecting no matter what surface hardness, hardness layer depth and hardness are having the eminent improvement. |
參考文獻 |
1. Rui Li, Parag Hegde, Albert Jhao-Ming Shih,”High- throughtput drilling of titanium alloys”, International Journal of Machine Tools & Manufacture, Vol. 47, pp. 63-74, 2007.
2. J.L. Cantero et al., “Dry drilling of alloy Ti-6Al-4V”, International Journal of Machine Tools & Manufacture , Vol. 45, pp. 1246-1255,2005.
3. Rodrigo Panosso Zeilmann, Walter Lindolfo Weingaertner, “Analysis of temperature during of Ti-6Al-4V with minimal quantity of lubricant”,Journal of materials processing technology, Vol. 179, pp. 124-127, 2006.
4. Johannes Adrianus Van Geffen, ”Piercing tools”, the United States Patent 3,939,683, 1976.
5. Johannes Adrianus Van Geffen, “Methods and apparatuses for forming by frictional heat and pressure holes surrounded each by a boss in metal plate or the wall of a metal tube”, the United States Patent 4,175,413, 1979.
6. Scott F. Miller, Jia Tao, Albert Jhao-Ming Shih, “Friction drilling of cast metals”,International Journal of Machine Tools & Manufacture, Vol. 46,pp.1526-1535,2006.
7. Scott F. Miller, Peter J. Blau, Albert J. Shih, “Tool Wear in friction drilling”, International Journal of Machine Tools & Manufacture, Vol. 47,pp.1636-1645, 2007.
8. Han-Ming Chou, Shin-Ming Li, Lieh-Dai Yang, “Machining characteristic study of friction drilling on AISI 304 stainless steel”, Journal of materials processing technology, online, 2008.
9. Y.S. Sato, et al. “Microstructural evolution of ultrahigh carbon steel during friction stir welding”, Scripta Materialia, Vol. 57, pp. 557-560, 2007.
10. Hidetoshi Fujii, et al. “Friction stir welding of carbon steels”, Materials Science and Engineering A, Vol. 429, pp. 50-57,2007.
11. R. Nandan, G.G. Roy, T.J. Lienert, T. Debroy, “Three-dimensional heat and material flow during friction stir welding of mild steel”, Acta Materialia , Vol. 55, pp.883-895, 2007
12. 郭建奕,「304不銹鋼覆焊熱影響區及308L焊道金屬之顯微組織研究」,國立臺灣大學,碩士論文,民國九十年。
13. 謝政宏,「建立AISI 304不銹鋼之鑽孔品質預測及鑽削參數最佳化模式之探討」,國立屏東科技大學,碩士論文,民國八十八年。
14. 物質安全資料表,網路資料,網址:http://www.iosh.gov.tw/msds.htm
15. 洪良德,切削刀具學,二版六刷,全華書局,台北市,民國八十九年。
16. 黃振賢等編著,鋼鐵材料手冊(增訂版),修訂一版,中國材料科學學會,新竹市,民國八十七年。
17. 黃振賢,金屬熱處理,十八版二刷,新文京開發出版有限公司,台北縣中和市,民國九十一年。
18. 黃振賢,機械材料,新修訂一版,文京圖書有限公司,台北縣中和市,民國八十九年。
19. 日本熱處理技術協會編,熱處理技術用書4 特殊鋼的熱處理,賴耿陽譯,復漢出版社,台南市東區,民國八十七年。
20. 佐滕知雄編,鋼鐵組織顯微鏡圖說( 1985增補3版),賴耿陽譯,復漢出版社,台南市東區,民國八十一年。
21. 范光照 張郭益編著,精密量測,三版二刷,高立圖書有限公司,台北縣五股工業區,民國九十一年。 |