博碩士論文 953203049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:3.22.249.229
姓名 陳企甫(Chi-fu Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 磷化銦與絕緣體上矽材料輻射性質之研究
(Investigation of Radiative Properties for InP and SOI)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 質子交換膜燃料電池陰極端之兩相流模擬與研究★ 矽相關半導體材料光學模式之實驗量測儀器發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究運用傅立葉轉換紅外線光譜儀 (FT-IR spectrometer) 搭配高溫穿透及反射腔體,量測數種不同摻雜的磷化銦(InP)晶圓與氧離子佈植隔離(Separation by Implantation of Oxygen, SIMOX)絕緣體上矽(Silicon on Insulator, SOI)晶圓,波長分別由0.8μm(InP)與0.7μm(SOI)到19μm,溫度由室溫分別到700℃(InP)與800℃(SOI)之輻射性質。目的在建立InP與SOI於溫升狀態下之光學常數數值,以補足過去文獻中,僅有常溫下數據,不敷高溫熱處理製程使用之缺憾。此外,本文中所分別計算出與量測得到的溫升狀態下之InP總放射率(total emissivity)及SIMOX SOI的穿透、反射等輻射性質也是文獻上首次出現。並且經由介紹快速熱處理製程(Rapid Thermal Processing, RTP),了解材料之輻射性質在溫度量測上所扮演的重要角色。本實驗經由量測InP與SOI晶圓於溫升時所表現的表觀(apparent)穿透率和反射率,以熱輻射和電磁波理論所提供關係,計算出相關的輻射性質,並分別與Palik [1](InP)之數值及Georgia Institute of Technology之Lee and Zhang的模擬軟體Rad-Pro v1.2 [2](SOI)進行比較,以相互驗證數據之正確性。
摘要(英) In this work, we measured several InP wafers with different doping and Separation by Implantation of Oxygen (SIMOX) Silicon on Insulator (SOI) wafer by using Fourier Transform Infrared (FT-IR) spectrometer with a high temperature transmittance and reflectance cell, respectively. The measurement can be performed in the temperature range from room temperature to 700℃ for InP and 800℃ for SOI respectively over a wide spectral range from 0.8μm for InP and 0.7μm for SOI to 19μm. Due to the lacks of empirical or experimental data of InP and SOI wafers at elevated temperature at present, they are simultaneously measured and analysis in the present study. Furthermore, the total emissivity of InP and the reflectance and transmittance of SIMOX SOI wafers at elevated temperatures is firstly reported in this paper. The other related radiative properties are also simultaneously deduced by optical models. And using the data from Palik’s handbook[1] for InP and the simulation software Rad-Pro v1.2 of Lee and Zhang[2] for SOI to validate the current experimental measurement.
關鍵字(中) ★ 磷化銦
★ 絕緣體上矽
★ 輻射性質
★ 快速熱製程
★ 半導體
關鍵字(英) ★ InP
★ SOI
★ radiative properties
★ RTP
★ semiconductor
論文目次 中文摘要…………………………………………………………………I
英文摘要…………………………………………………………………II
誌謝……………………………………………………………………III
目錄………………………………………………………………………IV
圖目錄…………………………………………………………………VII
表目錄……………………………………………………………………IX
符號說明…………………………………………………………………X
一、緒論
1-1研究動機與背景……………………………………………………1
1-2文獻回顧……………………………………………………………2
1-2-1磷化銦(InP)文獻回顧…………………………………………3
1-2-2絕緣體上矽(SOI)文獻回顧…………………………………6
1-3研究內容……………………………………………………………8
二、背景理論
2-1熱輻射理論………………………………………………………11
2-1-1馬克斯威爾方程式(Maxwell’s equation)…………………11
2-1-2黑體輻射………………………………………………………12
2-1-3放射率…………………………………………………………13
2-1-4放射率與吸收率之關係………………………………………13
2-2吸收機制…………………………………………………………14
2-2-1帶間躍遷(Band-to-band Transition)…………………………14
2-2-2能帶與雜質能階(Impurity Level)躍遷……………………15
2-2-3自由載子(Free-carrier)吸收…………………………………15
2-2-4內導電帶(Interconduction-band)遷移………………………16
2-2-5內價電帶(Intervalence-band)遷移…………………………16
2-2-6晶格震盪(Lattice Vibrations)吸收…………………………17
2-3光束覓跡(Ray Tracing)法………………………………………18
2-3-1單層(無薄膜)材料…………………………………………18
2-3-2薄膜材料……………………………………………………19
三、實驗內容
3-1實驗儀器設備……………………………………………………25
3-1-1傅立葉轉換紅外線光譜儀…………………………………26
3-1-2高溫加熱腔體………………………………………………30
3-1-3後端資料處理系統…………………………………………34
3-2實驗試片…………………………………………………………35
3-2-1 InP試片………………………………………………………35
3-2-2 SOI試片………………………………………………………36
3-3實驗程序…………………………………………………………37
3-3-1穿透率量測…………………………………………………37
3-3-2反射率量測…………………………………………………37
3-4實驗儀器校正分析………………………………………………38
3-5實驗誤差分析……………………………………………………43
四、結果與討論
4-1量測原理簡介……………………………………………………47
4-2磷化銦(InP)量測數據…………………………………………47
4-2-1 InP穿透率……………………………………………………47
4-2-2 InP反射率……………………………………………………51
4-3磷化銦(InP)計算數據…………………………………………54
4-3-1 InP放射率……………………………………………………54
4-3-2折射參數(refractive index, n)………………………………57
4-3-3吸收係數(absorption coefficient, α)………………………59
4-3-4總放射率(total emissivity)…………………………………60
4-4絕緣體上矽(SOI)量測數據……………………………………61
4-4-1 SOI穿透率……………………………………………………61
4-4-2 SOI反射率……………………………………………………69
4-5絕緣體上矽(SOI)計算數據……………………………………79
4-5-1 SOI放射率……………………………………………………79
4-5-2 SOI總放射率…………………………………………………83
五、結論與建議
5-1結論………………………………………………………………85
5-1-1磷化銦(InP)結論……………………………………………85
5-1-2絕緣體上矽(SOI)結論………………………………………85
5-2未來工作建議……………………………………………………86
參考文獻………………………………………………………………87
圖目錄
圖2.1均勻平面波的電磁與磁場示意圖………………………………11
圖2.2帶間躍遷示意圖…………………………………………………14
圖2.3自由載子吸收示意圖……………………………………………15
圖2.4內導電帶遷移示意圖……………………………………………16
圖2.5內價電帶遷移示意圖……………………………………………17
圖2.6光束覓跡法示意圖………………………………………………18
圖2.7 SOI正面入射示意圖……………………………………………20
圖2.8 SOI背面入射示意圖……………………………………………20
圖3.1 FT-IR spectrometer示意圖……………………………………25
圖3.2麥克森干涉儀示意圖……………………………………………27
圖3.3 DTGS偵測器……………………………………………………29
圖3.4 Si偵測器…………………………………………………………30
圖3.5穿透腔體架設於FT-IR上………………………………………31
圖3.6穿透腔體結構示意圖……………………………………………31
圖3.7 sample holder之thermal couple路徑改良示意圖…………32
圖3.8反射腔體架設於FT-IR上………………………………………33
圖3.9反射腔體結構示意圖……………………………………………33
圖3.10背景光源頻譜圖………………………………………………38
圖3.11 DTGS偵測器穿透率量測校正圖……………………………40
圖3.12 Si偵測器穿透率量測校正圖…………………………………42
圖4.1 ~ 4.8 InP穿透頻譜………………………………………………48
圖4.9 ~ 4.16 InP反射頻譜………………………………………………51
圖4. 17各溫度下Fe-doped InP反射頻譜………………………………54
圖4.18 ~ 4.25 InP放射頻譜……………………………………………55
圖4.26 各溫度下Fe-doped InP之折射參數……………………………58
圖4.27 各溫度下S-doped InP之折射參數……………………………58
圖4.28各溫度下Fe-doped InP之吸收係數……………………………59
圖4.29各溫度下S-doped InP之吸收係數……………………………60
圖4.30不同溫度下各InP之總放射率…………………………………61
圖4.31 ~ 4.38 SOI正面穿透頻譜………………………………………62
圖4.39 ~ 4.46 SOI背面穿透頻譜………………………………………65
圖4.47 ~ 4.49 SOI正反面穿透頻譜比較圖……………………………68
圖4.50 ~ 4.58 DTGS偵測器SOI正面反射頻譜………………………70
圖4.59 ~ 4.67 Si偵測器SOI正面反射頻譜……………………………73
圖4.68 ~ 4.76 SOI背面反射頻譜………………………………………76
圖4.67 ~ 4.85 SOI正面放射頻譜………………………………………80
圖4.86各溫度下SOI正反面總放射率之實驗與模擬數據比較圖……83
表目錄
表3-1 實驗用各晶圓規格比較表………………………………………36
表3-2大氣中主要氣體之能量吸收光帶………………………………40
表3.3 InP室溫下各波長穿透率誤差……………………………………45
表3.4 SOI室溫下各波長穿透率誤差……………………………………45
參考文獻 〔1〕 Palik, E. D. (Eds.), Handbook of Optical Constants of Solids, New York, Academic Press, 1985.
〔2〕 http://www.me.gatech.edu/~zzhang/Rad_Pro.htm
〔3〕 http://www.stt.org.tw/tw/manufacturer.asp
〔4〕 半導體科技雜誌,第30期,2002年8月。
〔5〕 Herzinger, C. M., Snyder, P. G., Johs, B., Woollam, J. A., “InP Optical Constants Between 0.75 and 5.0 eV Determined by Variable-angle Spectroscopic Ellipsometry,” Journal of Applied Physics, Vol. 77, no. 4, pp. 1715-1724, 1995.
〔6〕 陳啟文和陳韋旗,「絕緣層上矽分析及應用」,明新學報,32期,103-115頁,2006年8月。
〔7〕 吳志宏等,「SOI晶圓之發展現況與應用」,機械工業雜誌,257期,93-101頁。
〔8〕 Adachi, S., Physical Properties of III-V Semiconductor Compounds : InP, InAs, GaAs, GaP, InGaAs, and InGaAsP, Wiley, 1992.
〔9〕 Cardona, M., “Optical Studies of the Band Structure of InP,” Journal of Applied Physics, Vol. 32, no. 5, pp. 958, 1961.
〔10〕 Cardona, M., “Infrared Dielectric Constant and Ultraviolet Optical Properties of Solids with Diamond, Zinc Blende, Wurtzite, and Rocksalt Structure,” Journal of Applied Physics, Vol. 36, no. 7, pp. 2181-2186, 1965.
〔11〕 Aspnes, D. E., and Studna, A. A., “Dielectric Functions and Optical Parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Physical Review B, Vol. 27, Issue 2, pp. 985-1009, 1983.
〔12〕 Pettit, G. D., and Turner, W. J., “Refractive Index of InP,” Journal of Applied Physics, Vol. 36, no. 6, pp. 2081, 1965.
〔13〕 Newman, R., “Optical Properties of n-Type InP,” Physical Review, Vol. 111, Issue 6, pp. 1518-1521, 1958.
〔14〕 Pikhtin, A. N., and Yas'kov, A. D., “Dispersion of the Refractive Index in Semiconductors With Diamond and Zinc-Blend Structures,” Soviet Physics-Semiconductors, Vol. 12, no. 6, pp. 622-626, June 1978.
〔15〕 Reynolds, W. N., Lilburne, M. T., and Dell, R. M., “Some Properties of Semiconducting Indium Phosphide,” Proceedings of the Physical Society, Vol. 71, pp. 416-421, 1958.
〔16〕 Koteles, E. S., and Datars, W. R., “Two-phonon Absorption in GaAs and InP,” Solid State Communications, Vol. 19,Issue 3, pp. 221-225, 1976.
〔17〕 Jamshidi, H., and Parker, T. J., “The Far Infrared Optical Properties of InP at 6 and 300 K,” International Journal of Infrared and Millimeter Waves, Vol. 4, pp. 1037-1044, 1983.
〔18〕 Bairamov, B. H., Ipatova, I. P., Milorava, V. A., Toporov, V. V., Naukkarinen, K., Tuomi, T., Irmer, G., and Monecke, J., “Theoretical and Experimental Study of Raman Scattering and Infrared Reflectivity in Indium Phosphide,” Physical Review B, Vol. 38, Issue 8, pp. 5722-5725, 1988.
〔19〕 Lautenschlager, P., Garriga, M., and Cardona, M., “Temperature Dependence of the Interband Critical-point Parameters of InP,” Physical Review B, Vol. 36, Issue 9, pp. 4813-4820, 1987.
〔20〕 Whalen, M. S., and Stone, J., “Index of Refraction of n-type InP at 0.633- and 1.15-µm Wavelengths as a Function of Carrier Concentration,” Journal of Applied Physics, Vol. 53, Issue 6, pp. 4340-4343, 1982.
〔21〕 Stone, J., and Whalen, M. S., “Index of Refraction Dispersion of n- and p-type InP Between 0.95 and 2.0 eV,” Applied Physics Letters, Vol. 41, Issue 12, pp. 1140-1142, 1982.
〔22〕 Ravindra, N.M., Abedrabbo, S., Gokce, O. H., Tong, F., Patel, A., Velagapudi, R., Williamson, G. D., Maszara, W. P., “Radiative Properties of SIMOX,” IEEE Transactions on components, packaging, and manufacturing technology-part A, Vol. 21, No. 3, pp. 441-449, 1998.
〔23〕 Modest, M. F., Radiative Heat Transfer, 2nd ed., Academic Press, New York, 2003.
〔24〕 Cheng, D. K., Field and Wave Electromagnetics, 2nd ed., Addison-Wesley, 1996.
〔25〕 Ravindra, N. M., Abedrabbo, S., Chen, W., Tong, F. M., Nanda, A. K., and Speranza, A. C., “Temperature-Dependent Emissivity of Silicon-Related Materials and Structures,” IEEE Trans on Semiconductor Manufacturing, Vol. 11, no. 1, pp. 30-39, 1998.
〔26〕 Zhang, Z. M., Fu, C. J., and Zhu, Q. Z., “Optical and Thermal Radiative Properties of Semiconductors Related to Micro/Nanotechnology,” Advances in Heat Transfer, Vol. 37, pp. 179-296, 2003.
〔27〕 Kittel, C., Introduction to Solid State Physics, 7th ed., New York, Wiley, 1996.
〔28〕 Cohen, M. L., and Chelikowsky, J. R., Electronic Structure and Optical Properties of Semiconductors, 1st ed., Berlin, Springer-Verlag, 1988.
〔29〕 Pankove, J. I., Optical Processes in Semiconductors, Dover Publications, New York, 1971.
〔30〕 Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T., Numerical Recipes, Cambridge University Press, 1986.
〔31〕 Yeh, P., Optical Waves in Layered Media, Wiley, New York, 1988.
〔32〕 Toscano, W. M. and Cravalho, E. G., “Thermal Radiation Properties of the Noble Metals at Cryogenic Temperatures,” Journal of Heat Transfer, Vol. 98, pp. 438-445, 1976.
〔33〕 Roozeboom, F.(Eds.), Advances in Rapid Thermal and Integrated Processing, 1996.
〔34〕 Timans, P. J., “The Role of Thermal Radiative Properties of Semiconductor Wafers in Rapid Thermal Processing”, Materials Research Society Symposium Proceedings, Vol. 429, pp. 3-14, 1996.
〔35〕 Botteldooren, D., and Baets, R., “Influence of Band-gap Shrinkage on the Carrier-induced Refractive Index Change in InGaAsP,” Applied Physics Letters, Vol. 54, Issue 20, pp. 1989, 1989.
〔36〕 Bennett, B.R., Soref, R.A., and Del Alamo, J.A., “Carrier-induced Change in Refractive Index of InP, GaAs and InGaAsP,” IEEE Journal of Quantum Electronics, Vol. 26, Issue 1, pp. 113-122, 1990.
〔37〕 Oswald, F., and Schade, R., “The Determination of the Optical Constants of Semiconductors of the Type A(III)B(V) in the Infrared,” Zeitschrift fur Naturforschung, Vol. 9A, pp. 611-617, 1954.
〔38〕 Beaudoin, M., DeVries, A. J. G., Johnson, S. R., Laman, H., and Tiedje, T., “Optical Absorption Edge of Semi-insulating GaAs and InP at High Temperatures,” Applied Physics Letters, Vol. 70, Issue 26, pp. 3540-3542, 1997.
〔39〕 Mrstik, B. J., McMarr, P. J., Lawrence, R. K., and Hughes, H. L., “The Use of Spectroscopic Ellipsometry to Predict the Radiationresponse of SIMOX,” IEEE Transactions on Nuclear Science, Vol. 41, Issue 6, pp. 2277-2283, 1994.
〔40〕 Charpenay, S., Rosenthal, P. A., Solomon, P. R., Xu, J., Yakovlev, V. A., Allen, L. P. Brandt, M. W., and Cordts, B., “FT-IR Reflectance Spectroscopy Control of SIMOX Structures,” Proceedings 1998 IEEE International SOI Conference, pp. 43-44, 1998.
〔41〕 Yakovlev, V. A., Rosenthal, P. A., and Ane, M. J., “FTIR Dosimetry Mapping of as-Implanted SIMOX Wafers,” 2001 IEEE International SOI Conference, pp. 39-40 ,2001.
〔42〕 Lee, B. J., Zhang, Z. M., Early, E. A., DeWitt, D. P., and Tsai, B. K., “Modeling Radiative Properties of Silicon with Coatings and Comparison with Reflectance Measurements,” Journal of Thermophysics and Heat Transfer, Vol. 19, No. 4, pp. 558-565, 2005.
〔43〕 Maltison, I. H., “Interspecimen Comparison of the Refractive Index of Fused Silica,” Journal of the Optical Society of America, Vol. 55, No. 10, pp.1205-1209, 1965.
〔44〕 Sze, S. M., Semiconductor Devices: Physics and Technology, 2nd Ed., Wiley, 2001.
〔45〕 http://felix.physics.sunysb.edu/~allen/252/PHY251_Michelson.html
〔46〕 http://www.pyrometer.com/Tech/emissivity_technology.html
〔47〕 Kline, S. J., “The Purpose of Uncertainty Analysis,” ASME Journal of Fluids Engineering, Vol. 107, pp. 153-160, 1985.
〔48〕 Abernethy R. B., Benedict, R. P., and Dowdell, R. B., “ASME Measurement Uncertainty,” ASME Journal of Fluids Engineering, Vol. 107, pp. 161-164, 1985.
〔49〕 Moffat, R. J., “Using Uncertainty Analysis in the Planning of Experiment,” ASME Journal of Fluids Engineering, Vol. 107, pp. 173-179, 1985.
〔50〕 Lassahn, G. D., “Uncertainty Definition,” ASME Journal of Fluids Engineering, Vol. 107, pp. 179-180, 1985.
指導教授 曾重仁(Chung-jen Tseng) 審核日期 2008-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明