博碩士論文 953203050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:18.219.15.112
姓名 陳勇州(Yung-Chou Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 多孔介質流場定量量測與分析及其應用
(Quantitative Measurements and Analyse of Porous Media Flows and their Application)
相關論文
★ 蚶線形滑轉板轉子引擎設計與實作★ 實驗分析預混紊焰表面密度傳輸方程式及Bray-Moss-Libby模式
★ 低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅★ 預混火焰與尾流交相干涉之實驗研究
★ 自由傳播預混焰與紊流尾流交互作用﹔火焰拉伸率和燃燒速率之量測★ 重粒子於泰勒庫頁提流場之偏好濃度與下沈速度實驗研究
★ 潔淨能源:高效率天然氣加氫燃燒技術與污染排放物定量量測★ 預混焰與紊流尾流交互作用時非定常應變率、曲率和膨脹率之定量量測
★ 實驗方式產生之均勻等向性紊流場及其於兩相流之應用★ 液態紊流噴流動能消散率場與微尺度間歇性 之定量量測
★ 預混焰和紊流尾流交互作用:拉伸率與輻射熱損失效應量測★ 四維質點影像測速技術與微尺度紊流定量量測
★ 潔淨能源:超焓燃燒器研發★ 小型熱再循環觸媒燃燒器之實驗研究及應用
★ 預混紊流燃燒:碎形特性、當量比 和輻射熱損失效應★ 預混甲烷紊焰拉伸量測,應用高速PIV
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文定量量測多孔介質(porous media)流道表面及其內部流場之速度分佈,應用數位質點影像測速儀(digital particle image velocimetry, DPIV),結合折射率契合(index of refractive matching, IRM)技術,針對兩種不同流場,即壓力驅動矩型管流和旋轉圓管壁剪力驅動流場,在不同孔隙率(ε)和不同雷諾數(Re)條件下,定量量測多孔介質速度場之變化,進而評估著名的多孔介質Brinkman方程式中有效黏滯係數(μ*)與多孔介質表面滑移係數(???? ,μ為流體動黏滯係數)之關係及其適用性。有關壓力驅動流方面,於多孔介質矩型流道內下方分別放置圓柱陣列或玻璃珠,來模擬不同ε值之多孔性介質。採用不同柱距的透明圓柱陣列,可排列出均質(homogeneous)但不同的ε值(ε = 0.6 ~ 0.9)之多孔介質,而使用玻璃珠(粒徑d = 2mm)作為非均質(non-homogeneous)之多孔介質時,可降低ε值至0.4使其近似於燃料電池多孔電極材料之ε值。由DPIV量測結果顯示,流體與多孔介質表面有明顯之滑移速度(us),且us與ε和一以流道水力直徑所定義之Re數有重要之關係。藉由一無因次滑移速度us/(γ(●)k0.5) ≡ Ûs ≡ 1/?來說明主要結果,其中γ(●)為多孔介質表面上的剪應變率而k為滲透率,我們發現,當ε值為一定值(介於0.6 ε 0.9)時,Ûs值會隨Re增加而增加(至少Re 100),而在固定Re值下,Ûs值也會隨著ε值增加而增加。應用IRM技術於ε = 0.4之玻璃珠多孔介質流場,我們可量測多孔介質從表面滑移速度到內部流場速度漸減至Darcy速度時所需經過之多孔介質厚度,並定義此厚度為轉換層厚度(δ),實驗結果顯示δ值為定值,不隨Re變化,至少在20 Re 100範圍內,且δ ? 0.75d。再者,量測所得之Ûs值比一般使用Brinkman方程式所假設的Ûs = 1 (或??????)高出5.5~13倍,即Ûs = 5.5 ~ 13與Re數有關。另外,剪力驅動流場乃由兩同心之靜止內圓柱以及一空心可旋轉之外圓柱所構成,內圓柱壁上則裝上許多小圓柱陣列來模擬具不同的ε值(ε = 0.8 ~ 0.9)之多孔介質。實驗結果中顯示,在任一固定ε值下,Ûs值會隨Re增加反而會減少,與壓力驅動流場正好相反,顯示Ûs值與流場型態有關,且Ûs = 0.21~0.29 < 1,與壓力驅動流場顯著不同。綜合以上的結果,顯示一般使用Brinkman方程式所假設之Ûs = 1 (或?????)須再做考慮與修正。
摘要(英) This thesis reports measurements of the velocity distribution across the porous surface and inside using digital particle image velocimetry (DPIV) together with the index of refraction matching (IRM) technique. A pressure-driven rectangular duct and a shear-driven Couette flow, each covering a wide range of flow Reynolds number (Re) and the porosity (ε) of porous media, are studied. The variation of the velocity distribution in porous media is quantitatively measured to identify the relation between the effective viscosity (μ*) of the well-known Brinkman equation and the slip coefficient (???? ??μ is fluid dynamic viscosity) at the surface of porous media, so that the applicability of such relation can be evaluated. In the case of pressure-driven flow, the transparent cylinder arrays or glass beads are used to simulate the porous media. The homogeneous porous media with ε varying from 0.6 to 0.9 can be obtained using the cylinder arrays with different gaps among cylinders while the non-homogeneous porous media with ε ? 0.4. Closely matching that of the electrode material in the fuel cell can be established using small glass beads of 2 mm-diameter (d). DPIV measurements show that there are significant slip velocities (us) at the interface of the homogeneous porous media, of which values of us are functions of ε and Re based on the hydraulic diameter of the flow channel. These results are to be demonstrated by a non-dimensional form of the slip velocities, Ûs ≡ us/(γ(●)k0.5) ≡ 1/?, where γ(●) and k are the shear stress at the surface and the permeability of porous media, respectively. It is found that values of Ûs increase with Re at a given value of ε (0.6 ? ε ? 0.9) or with ε at a given value of Re (Re ? 100). In non-homogeneous porous media (ε = 0.4) with the IRM method, it is also found that there exists a transition layer with a thickness of δ, through which the slip velocity at the interface of the porous media reduces to the Darcy velocity. Experimental results show that the value of δ is constant nearly and does not vary with Re, at least for 20 ? Re ? 100, where δ ? 0.75d. Moreover, values of Ûs are found to be much greater than that predicted by the Brinkman equation (Ûs = 1 or ??? 1), about 5.5 to 13 times higher, depending on Re. That is, Ûs = 5.5 ~ 13. In the case of shear-driven flow, the flow field is established between a stationary inner cylinder and a concentric rotating outer cylinder. The non-homogeneous porous media with ε varying from 0.8 to 0.9 can be similated by installing arrays of small cylindrical rods on the surface of the inner cylinder. In this case, experimental results show that Ûs decreases with increasing Re at any fixed values of ε. This is opposite to the case of pressure-driven flow, indicating that Ûs depends on the type of flow. Specifically, Ûs = 0.21 ~ 0.29 < 1, depending on Re. These results suggest that the commonly used assumption that is μ* = μ or ??? 1 (Ûs = 1) in the Brinkman equation should be re-considered and modified according to the type of flow, ε and Re.
關鍵字(中) ★ DPIV量測
★ 無因次滑移速度
★ 滑移速度
★ 多孔性介質
★ 折射率契合
關鍵字(英) ★ digital particle image velocimetry
★ non-dimensional slip velocity
★ slip velocity
★ Porous media
★ index of refractive matching technique
論文目次 中文摘要 I
英文摘要 III
致謝 V
目錄 VI
圖表目錄 IX
符號說明 XIII
第一章 前言 1
1.1研究動機 1
1.2文獻回顧 3
1.2.1 多孔性介質內部流場 3
1.2.2 流通過多孔性介質之介面流場 5
1.2.3 界面流場的邊界條件 7
1.2.4 無因次滑移速度 11
1.3問題所在 14
1.4解決方法 15
1.5論文概要 16
第二章 壓力驅動之多孔性介質流場 21
2.1圓柱陣列之多孔性介質量測流場 21
2.1.1 流場觀測設備 21
2.1.2 實驗方法與條件 23
2.1.3粒子的適用性 24
2.1.4 影像與速度分析方法 25
2.2玻璃珠陣列之多孔性介質量測流場 26
2.2.1 流場觀測設備 26
2.2.2 .流道的設計與製作 27
2.2.3 折射率量測 29
2.2.4 實驗方法與條件 30
2.2.5 孔隙率之量測 31
2.2.6 影像與速度分析方法 32
第三章 壓力驅動之多孔性介質流場結果與討論 36
3.1壓力流場通過圓柱陣列時之速度場分析 36
3.1.1通過圓柱陣列時之整體速度場分析 36
3.1.2不同孔隙率速度場之分佈 38
3.2壓力流場通過多孔介質為玻璃珠之速度場分析 42
3.2.1折射率契合之流場可視化 42
3.2.2雷諾數與轉換層厚度之關係 43
3.2.3無因次滑移速度之分析 44
第四章 剪力驅動之多孔性介質流場 58
4.1流場觀測設備 58
4.2多孔介質的設計 59
4.3實驗方法與條件 62
第五章 剪力驅動之多孔性介質流場結果與討論 69
5.2無因次滑移速度之分析 70
第六章 結論與未來工作 81
6.1 結論 81
6.2 應用 82
6.3 未來工作82
參考文獻 84
參考文獻 Agelinchaab, M., Tachie, M. F. and Ruth, D. W. 2006 Velocity measurement of flow through a model three-dimensional porous medium. Phys. Fluids. 18 (017105):1-11.
Alazmi, B. and Vafai, K. 2001 Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer. Int. J. Heat Mass Transfer. 44:1735-1749.
Bear, J. 1988 Dynamics of fluids in porous media.
Beavers, G. S. and Joseph, D. D. 1967 Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197-207.
Brinkman, H. C. 1947 A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A1:27-34.
Davis, A. M. J. and James, D. F. 2003 Velocity measurements of a shear flow penetrating a porous medium. J. Fluid Mech. 493:319-343.
Davis, A. M. J. and James, D. F. 2003 The Slip Velocity at the Edge of a Porous Medium Effects of Interior Resistance and Interface Curvature. Transport in Porous Medium. 53:175-196.
Durlofsky, L. and Brady, J. F. 1987 Analysis of Brinkman Equation as a model for flow in porous media. Phys. Fluids. 30(11):3329-3340.
Gilver, R. C. and Altobelli, S. A., 1994 A determination of the effective viscosity for the Brinkman-Forchhiemer flow model. J. Fluid Mech. 258:355-370.
Goharzadeh, A., Khalili, A. and Jorgensen, B. B. 2005 Transition layer thickness at a fluid-porous interface, Phys. Fluids. 17(057102):1-10.
Gupte, S. K. and Advani, S. G. 1997 Flow near the permeable boundary of a porous medium: an experimental investingation using LDA. Exp Fluids 22:408-422.
Jackson, D. F. and Davis, A. M. J. 1986 The permeability of fibrous porous media. J. Fluid Mech. 64:364-374.
James, D. F. and Davis, A. M. J. 2001 Flow at the interface of a model fibrous medium. J. Fluid Mech. 426:47-72.
Kim, S. and Russel, W. B. 1985 Modeling of porous media by renormalization of the Stokes equation. J. Fluid Mech. 154:269-286.
Koplike, J., Levine, H. and Zee, A. 1984 Viscosity renormalization in the Brinkman equation. Phys. Fluids. 26(10):2864-2870.
Larson, R. E. and Higdon, J. J. L. 1986 Microscopic flow near the surface of two-dimensional porous media. I-Axial flow. J. Fluid Mech. 166:449-472.
Larson, R. E. and Higdon, J. J. L. 1987 Microscopic flow near the surface of two-dimensional porous media. II-Transverse flow. J. Fluid Mech. 178:449-472.
Lungren, T. S. 1972 Slow flow through stationary random beds and suspensions of spheres. J. Fluid Mech. 51:273-299.
Matrys, N., Bentz, D. P. and Garboczi, E. J. 1994 Computer simulation of effective viscosity in Brinkman’s equation. Phys. Fluids. 6(4):1434-1439.
Min, J. Y. and Kim, S. J. 2004 Determination of the unknown coefficients in stresss and flux conditions at fluid- porous interface. Inter Society Conference on Thermal Phenomena. 1:50-57.
Neale, G. and Nader, W. 1974 Practical significance of Brinkman’s extension of Darcy’s law: coupled parallel flows within a channel and a bounding porous medium. Can. J. Chem. Engrg. 52:475-478.
Ochoa-Tapia, J. A. and Whitaker, S. 1995 Momentum transfer at the boundary between a porous medium and a homogeneous fluid─I. Theoretical development. Int. J. Heat Mass Transfer. 38:2635-2646.
Ochoa-Tapia, J. A. and Whitaker, S. 1995 Momentum transfer at the boundary between a porous medium and a homogeneous fluid─II. Comparison with experiment. Int. J. Heat Mass Transfer. 38:2647-2655.
Ochoa-Tapia, J. A. and Whitaker, S. 1998 Momentum jump condition at the boundary between a porous medium and a homogeneous fluid: inertial effects. J. Porous Media. 1:201-217.
Rubinstein, N. 1986 Effective equation for flow in random porous media with a large number of scales. J. Fluid Mech. 170:379-383.
Sangami, A. S. and Behl, S. 1989 The planar singular solutions of Stokes and Laplace equations and their application to transport processes near porous surface. Phys. Fluids A. 1:21-37.
Sahraoui, M. and Kaviany, M. 1992 Slip and no-slip velocity boundary conditions at interface of porous, plain media. Int. J. Heat Mass Transfer. 35, 927-943.
Seguin, D., Montillet, A. and Comiti, J. 1998 Experimental characterization of flow regimes in various porous media. I — Limits of laminar flow regime. Chemical Engineering Science 52, 3751-3761.
Shams, M., Currie, I. G. and James, D. F. 2003 The flow field near the edge of a model porous medium. Exp. Fluids. 35:193-198.
Shams, M. 1999 Study of Flow at the Interface of a Porous Medium Using Particle Image Velocimetry. PhD thesis.
Shimizu, Y., Tsujimoto, T. and Nakagawa, H. 1990 Experimental and Macroscopic modeling of flow in highly porous medium under free-surface flow. J. Hydroscience and Hydraulic. Eng. 8:69-78.
Shy, S. S., Hung, C. M and Lee, C. H. 2007 Experimental and numerical studies on transport phenomena in porous rib-channels of interconnects and their influences to a single planar SOFC. 2007 Fuel Cell Seminar, Texas, USA, October 15-19.
Tachie, M. F. James, D. F. and Currie, I. G. 2004 Slow flow though a brush. Phys. Fluids. 16:445-451.
Taylor, G. I. 1971 A model for the boundary condition of a porous material. Party 1. J. Fluid Mech. 49:319-326.
Vafai, 2000 Handbook of Porous Media.
Zeng, Z. and Grigg, R. 2006 A Criterion for Non-Darcy Flow in Porous Media. Transport in Porous Medium. 63:57-69.
Zhong, W. H. Currie, I. G. and James, D. F. 2006 Creeping flow a model fibrous porous medium. Exp. Fluids. 40:119-126.
簡奇偉 “平板式固態氧化物燃料電池氣態多孔管道之速度量測”,國立中央大學機械工程系,碩士論文 (2006)。
指導教授 施聖洋(Shenq-yang Shy) 審核日期 2009-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明