摘要(英) |
System engineering generally describes the correlation and reciprocation between lots of things by supply and demand. If there is a conflict on itself, the interspecific competition and the intraspecific competition would come into existence. And the system reach the balance in the end. In this article, we use scholar’s model in ecology to create the non-linear system model, finding out the equilibrium point, analyzing the stability, and discuss equilibrium point at the same time.
The research is to discuss the special case in the non-linear system. We use the fixed parameter value to find out the limit cycle. In order to make the non-linear system convergent and easy to control, the self-competition term and white noises are being used. Finally, we can get probability density function of the variable and discuss the result by the Fokker-Planck equation. |
參考文獻 |
[1] 高志亮、李忠良,”系統工程方法論”,西北工業大學出版社,2004
[2] 王國雄,中央大學機械系”系統工程” 講義,民國94年
[3] 張碩,”自動控制系統”,鼎茂圖書出版,民國90年。
[4] Chi-Tsong Chen,”LINEAR SYSTEM THEORY AND DISIGN”,Third
Edition,Oxford,New York, 1999.
[5] Hassan K. Khalil,”Nonlinear Systems”,Third Edition.
[6] W. J. Cunningham,”Introduction to Nonlinear Analysis”﹐McGraw-Hill,New York,1958.
[7] Leah Edelstein-Keshet,”Mathematical Models in Biology”,Random
House,New York,NY,1988.
[8] Risken, H.”The Fokker-Planck equation : methods of solution and
applications” ,New York,Springer-Verlag,1989
[9] C. W. Gardiner”Handbook of stochastic methods for physics, chemistry, and
the natural sciences” ,New York,Springer-Verlag,1985
[10] 彭南夫,”簡介隨機過程”,數學傳播季刊第16卷4期,民國81年
[11] 李中宏,”考慮觸媒效應於三自由度系統正平衡點穩定性探討”,國立中央
大學機械工程研究所,碩士論文,民國95年
[12] 陳彥均,”三自由度系統正平衡點穩定性探討”,國立中央大學機械工程研
究所,碩士論文,民國95年
[13] 許世璧,”淺談生物數學上之競爭理論”,數學傳播季刊第17卷1期,民
國82年
[14] Peter Yodzis,”diffuse effect in food webs ecology”,Vol.81,No.1, pp.261-266
,Jan,2000.
[15] http://web.thu.edu.tw/linch/www/math/solve3.pdf
[16] G. Q. Cai and Y. K. Lin,”Stochastic analysis of the Lotka-Volterra model for
ecosystems”, PHYSICAL REVIEW E 70, 041910,2004
[17] Y. K. Lin and G. Q. Cai,”Probabilistic Structural Dynamics,Advanced Theory
and Applications”,McGraw-Hill, New York,1995
[18] G. Q. Cai and Y. K. Lin,”Stochastic analysis of predator-prey type
ecosystems ”,ECOLOGICAL COMPLEXITY NO.4,PP.242-249,2007 |