以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:19 、訪客IP:18.224.70.11
姓名 吳建昇(Chien-sheng Wu) 查詢紙本館藏 畢業系所 化學工程與材料工程學系 論文名稱 高產率BEA奈米沸石製備研究
(High-Yield Synthesis of BEA Zeolite Nanocrystals)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 二甲苯是合成纖維、塑化劑、樹酯很重要的原料。因而利用價值較低的甲苯與三甲基苯轉化成二甲苯的反應就相當地重要。而沸石正是此類反應的觸媒。由於反應物具有苯環的結構,對於較小孔洞結構的ZSM-5沸石來講(10-membered ring),反應物較難有效地擴散到孔洞內的活性位置上。此時較大孔洞的BEA沸石(12-membered ring)便有較高的應用價值。相較於微米級沸石,奈米沸石具有特高的外表面積與較短的擴散路徑,有利於某些特定觸媒反應或吸附程序。由文獻得知,要合成出小粒徑的BEA沸石就必須提升有機模板比例或將反應溫度降低,但這會導致反應時間拉長,而且離心後產率偏低。
在我們實驗室過去的研究中已知利用極低的水/氧化矽比例,可提高氧化矽過飽和狀態,進而增加成核速率而限制粒子成長。可快速合成出奈米silicalite-1 沸石結晶。為了彌補文獻中的不足,本研究延續過去的合成法,並參考文獻的配方與水熱溫度,試著合成出BEA 沸石。
在本研究中我們發現藉由改變前驅物成份比例,先移去水解所產生的醇類,再將多餘的水份移除。可得到高濃度的透明前驅溶膠。之後在90℃水熱增加溶膠中粒子聚集速度,使其慢慢成核並結晶。經由反應過程中每一步驟的儀器分析與鑑定,已掌握較佳的實驗條件,目前可穩定合成出小於50 nm的均一BEA沸石粒子,而且離心後的回收產率提高至60 wt%,大大地改善文獻中產率通常低於20 wt%的缺點。摘要(英) Zeolite BEA, with large pore size of 12-membered ring pore openings, is an industrial important catalyst for the transalkylation of toluene and C9 aromatics to produce xylene. It is also expected that if beta zeolite is made into nanocrystals, the higher external surface area may reduce the diffusion length and make the catalyst more effective. Consequently, the synthesis of beta zeolite nanocrystals has been the objectives of many researches. To synthesize smaller zeolite nanoparticles, one can either increase the ratio of organic-template or reduce the hydrothermal temperature. However, the consequence is longer hydrothermal time and lower zeolite yield.
Based on our experience in the synthesis of MFI zeolite, a pre-concentrating step before low temperature hydrothermal seemed to accelerate the formation of crystal nuclei and speed up the crystallization. The objective of this research is to applied the experience on MFI zeolite to beta zeolite system and verify if we can improve the zeolite yield without sacrifice the particle size.
1SiO2:0.04AIP:0.36 TEAOH:25H2O was found to be a better recipe. At first the EtOH was removed to force complete hydrolysis and the zeolite beta precursor would be concentrated to speed up the aggregation. Finally, the precursor was transferred to 90℃ for nucleation and crystallization.
The formation of zeolite from precursor and its aggregation and growth was monitored to understand the kinetics, based on which the final zeolite particle size could be controlled. Finally, Beta zeolite nanoparticles with uniform particle size distribution (<50 nm ) are successfully prepared from zeolite precursor. The yield of centrifugation could be 60 wt%.關鍵字(中) ★ 高產率
★ BEA奈米沸石關鍵字(英) ★ High yield
★ BEA zeolite nanocrystals論文目次 摘要..........................................i
Abstract......................................ii
誌謝..........................................iii
目錄..........................................iv
圖目錄........................................vi
表目錄........................................vii
第一章 緒論............... ...................1
1.1 沸石簡介..................................1
1.2 BEA沸石..................................3
第二章 文獻回顧..............................5
2.1 奈米BEA沸石的合成.........................5
2.2 奈米沸石的成長機制........................8
2.3 研究方向..................................10
第三章 奈米BEA沸石的製備與分析...............11
3.1 實驗藥品..................................12
3.2 系統真空度與濃縮步驟對沸石粒子的影響......13
3.3 反應溫度對沸石粒子的影響..................14
3.3.1 實驗步驟................................14
3.3.2 樣品水解時的pH值變化....................18
3.3.3 動態雷射粒徑儀(DLS)分析.................19
3.3.4 傅立葉紅外線光譜儀(FT-IR)分析.........24
3.3.5 粉末X-ray繞射儀(PXRD)分析...............26
3.3.6 結果探討................................28
3.4 有機模版比例對沸石粒子的影響..............29
3.4.1 反應時的pH值變化........................29
3.4.2 粒徑分析與產率計算......................30
3.4.3 結果探討................................31
3.5 第二階段水熱時間對沸石粒子的影響..........32
3.5.1 粒徑與PXRD分析..........................32
3.5.2 掃瞄式電子顯微鏡(SEM)分析.............34
3.5.3 感應偶合電漿原發射光譜分析(ICP-AES).....36
第四章 結論與建議 ............................37
參考文獻......................................39
附錄一 模版去除與表面改質後吸水膜測試........42
A.1 表面電位分析(Zeta Potential)..............42
A.2 實驗步驟..................................44
A.3 傅立葉紅外線光譜儀(FT-IR)與動態雷射粒徑儀(DLS)分析.46
A.4 熱重損失(TGA)分析.......................49
A.5 可見光穿透度(UV-Visible spectrum)分析...51
A.6 吸水性分析................................53
A.7 結果討論..................................56參考文獻 1.B.J.Schoeman, E.Babouchkina, S.Mintova, V.P.Valtchev, J.Sterte, Journal of Porous Materials 8, 13(2001).
2.J.B.Higgins et al. The framework topology of zeolite beta. 8(6), 446-452.1988. Zeolites.
3.I.Wang, T.C.Tsai, S.T.Huang, Industrial & Engineering Chemistry Research 29, 2005(1990).
4.Y.K. Lee, S.H.Park, H.K.Rhee, Catalysis Today 44, 223 (1998).
5.J.Das, Y.S.Bhat, A.I.Bhardwaj, A.B.Halgeri, Applied Catalysis A-General 116, 71(1994).
6.M.J.M.Mies, E.V.Rebrov, J.C.Jansen, M.H.J.M.de Croon, J. C.Schouten, Microporous and Mesoporous Materials 106, 95 (2007).
7.M.V.Landau et al., Chem. Mater. 11, 2030(1999).
8.L.H.Ding, Y.Zheng, Materials Research Bulletin 42, 584 (2007).
9.S.Mintova et al., Microporous and Mesoporous Materials 90, 237(2006).
10.R.B.Borade, A.Clearfield, Microporous Materials 5, 289 (1996).
11.S.Mintova, M.Reinelt, T.H.Metzger, J.Senker, T.Bein, Chemical Communications 326(2003).
12.M.A.Camblor, A.Corma, A.Mifsud, J.PerezPariente, S. Valencia, Synthesis of nanocrystalline zeolite Beta in the absence of alkali metal cations(1997), pp.341-348.
13.M.A.Camblor, A.Corma, S.Valencia, Journal of Materials Chemistry 8, 2137(1998).
14.L.H.Ding, Y.Zheng, Z.S.Zhang, Z.N.Ring, J.W.Chen, Microporous and Mesoporous Materials 94, 1(2006).
15.M.A.Camblor, A.Mifsud, J.Perezpariente, Zeolites 11, 792(1991).
16.M.A.Camblor et al., Microporous and Mesoporous Materials 48, 11(2001).
17.P.P.E.A.De Moor, T.P.M.Beelen, B.U.Komanschek, O.Diat, R.A.van Santen, J.Phys.Chem.B 101,11077(1997).
18.Peter-Paul E.A.de Moor, Theo P.M.Beelen, Rutger A.van Santen.SAXS/WAXS study on the formation of precursors and crystallization of silicalite.9(3-4), 117-130.1997.
19.Brian J.Schoeman. A high temperature in situ laser light-scattering study of the initial stage in the crystallization of TPA-silicalite-1.18, 97-105.1997.
20.J.M.Fedeyko, J.D.Rimer, R.F.Lobo, D.G.Vlachos, J.Phys. Chem.B 108, 12271(2004).
21.J.D.Rimer, J.M.Fedeyko, D.G.Vlachos, R.F.Lobo, Chemistry-A European Journal 12, 2926(2006).
22.J.D.Rimer, R.F.Lobo, D.G.Vlachos, Langmuir 21, 8960 (2005).
23.J.D.Rimer, D.G.Vlachos, R.F.Lobo, J.Phys.Chem.B 109, 12762(2005).
24.J.D.Rimer, O.Trofymluk, A.Navrotsky, R.F.Lobo, D.G. Vlachos, Chem.Mater.19, 4189(2007).
25.J.D.Rimer, D.D.Roth, D.G.Vlachos, R.F.Lobo, Langmuir 23, 2784(2007).
26.C.Li, Journal of Catalysis 216, 203(2003).
27.G.Xiong et al., Microporous and Mesoporous Materials 42, 317(2001).
28.Y.Yu, G.Xiong, C.Li, F.S.Xiao, Microporous and Mesoporous Materials 46, 23(2001).
29.C.H.Cheng, D.F.Shantz, J.Phys.Chem.B 109, 19116(2005).
30.O.Larlus, S.Mintova, T.Bein, Microporous and Mesoporous Materials 96, 405(2006).
31.D.P.Serrano et al., Journal of Materials Chemistry 9, 2899(1999).
32.Q. Li, D.Creaser, J.Sterte, Microporous and Mesoporous Materials 31, 141(1999).
33.R.J.Watts, A.L.Teel, Journal of Environmental Engineering-Asce 131, 612(2005).
34.H.J.Xing et al., Catalysis Communications 9, 234(2008).
35.Y.S.Chun et al., Chemical Communications 1846(2002).
36.G.T.Vuong, T.O.Do, J.Am.Chem.Soc.129, 3810(2007).
37.Y.Li, H.M.Guan, T.S.Chung, S.Kulprathipanja, Journal of Membrane Science 275, 17(2006).
38.K.Ha, Y.J.Lee, D.Y.Jung, J.H.Lee, K.B.Yoon, Advanced Materials 12, 1614(2000).
39.V.Nikolakis, M.Tsapatsis, D.G.Vlachos, Langmuir 19, 4619(2003).
40.E.Bourgeatlami, F.Direnzo, F.Fajula, P.H.Mutin, T.D. Courieres, Journal of Physical Chemistry 96, 3807(1992).
41.V.Bolis, C.Busco, P.Ugliengo, J.Phys.Chem.B 110, 14849 (2006).指導教授 蔣孝澈(Anthony S.T. Chiang) 審核日期 2008-7-17 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare