參考文獻 |
1. R. J. Watts, S. Kong, and W. Lee, “Sedimentation and reuse of titanium dioxide: application to suspended-photocatalyst reactors,” Journal of Environmental Engineering, 121, pp.730-735 (1995).
2. D. Feng, C. Aldrich, and H. Tan, “Removal of heavy metal ions by carrier magnetic separation of adsorptive particulates,” Hydrometallurgy, 56, pp.359-368 (2000).
3. Y. Sakai, T. Miama, and F. Takahashi, “Simultaneous removal of organic and nitrogen compounds in intermittently aerated activated sludge process using magnetic separation,” Water Research, 31, pp.2113-2116 (1997).
4. C. L. Chun and J. W. Park, “Oil spill remediation using magnetic separation,” Journal of Environmental Engineering, 127, pp.443-449 (2001).
5. C. J. Chin, P. W. Chen, and L. J. Wang, “Removal of nanoparticles from CMP wastewater by magnetic seeding aggregation,” Chemosphere, 63, pp.1809-1813 (2006).
6. 范振國,「以磁種凝絮法處理暴雨期高濁度原水」,碩士論文,中央大學環境工程研究所,中壢,(2007)。
7. Y. Nosaka and M. A. Fox, “Kinetics for electron transfer from laser-pulse irradiated colloidal semiconductors to adsorbed methylviologen: dependence of the quantum yield on incident pulse width,” Journal of Physical Chemistry, 92, pp.1893-1897 (1988).
8. J. C. Garcia and K. Takashima, “Photocatalytic degradation of imazaquin in an aqueous suspension of titanium dioxide,” Journal of Photochemistry and Photobiology A: Chemistry, 155, pp.215-222 (2003).
9. L. L. Lifongo, D. J. Bowden, and P. Brimblecombe, “Photodegradation of haloacetic acids in water,” Chemosphere, 55, pp.467-476 (2004).
10.D. A. Friesen, L. Morello, J. V. Headley, and C. H. Langford, “Factors influencing relative efficiency in photo-oxidations of organic molecules by CsPW12O40 and TiO2 colloidal photocatalysts,” Journal of Photochemistry and Photobiology A: Chemistry, 133, pp.213-220 (2000).
11.I. Ilisz and A. Dombi, “Investigation of the photodecomposition of phenol in near-UV-irradiated aqueous TiO2 suspensions. Ⅱ: Effect of charge-trapping species on product distribution,” Applied Catalysis A: General, 180, pp.35-45 (1999).
12.N. Guettaï and H. Ait Amar, “Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. PartⅠ: Parametric study,” Desalination, 185, pp.427-437 (2005).
13.T. N. Obee and S. O. Hay, “Effects of moisture and temperature on the photooxidation of ethylene on titania,” Environmental Science and Technology, 31, pp.2034-2038 (1997).
14.A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, and J. M. Hermann, “Photocatalytic degradation pathway of methylene blue in water” Applied Catalysis B: Environmental, 31, pp.145-157 (2001).
15.H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard, and J. M. Herrmann, “Photocatalytic degradation of various types of dyes (Alizarin S, crocein orange g, methyl red, congo red, methylene blue) in water by UV-irradiated titania,” Applied Catalysis B: Environmental, 39, pp.75-90 (2002).
16.D. Bahanemann, D. Bockelmann, and R. Goslich, “Mechanistic studies of water detoxification in illuminated TiO2 suspensions,” Solar Energy Materials and Solar Cells, 24, pp.564-583 (1991).
17.T. A. McMurry, J. A. Byrne, P. S. M. Dunlop, J. G. M. Winkelman, B. R. Eggins, and E. T. McAdams, “Instrinsic kinetics of photocatalytic oxidation of formic and oxalic acid on immobilized TiO2 films,” Applied Catalysis A: General, 262, pp.105-110 (2004).
18.M. R. Dhananjeyan, R. Annapoorani, and R. Renganathan, “A comparative study on the TiO2 mediated photo-oxidation of uracil, thymine and 6-methyluracil,” Journal of Photochemistry and Photobiology A: Chemistry, 109, pp.147-153 (1997).
19.C. Zhu, L. Wang, L. Kong, X. Yang, S. Zheng, F. Chen, F. Maizhi, and H. Zong, “Photocatalytic degradation of AZO dyes by supported TiO2 + UV in aqueous solution,” Chemosphere, 41, pp.303-309 (2000).
20.G. A. Epling and C. Lin, “Photoassisted bleaching of dyes utilizing TiO2 and visible light,” Chemosphere, 46, pp.561-570 (2002).
21.C. Kormann, D. W. Bahnemann, and M. R. Hoffmann, “Photolysis of chloroform and other organic molecules in aqueous TiO2 suspensions,” Environmental Science and Technology, 25, pp.494-500 (1991).
22.P. Salvador, M. L. Gar, and Godlez, “Catalytic role of lattice defects In the photoassisted oxldatlon of water at (001) n-TiO2 Rutile,” Journal of Physical Chemistry, 96. pp.10349-10353 (1992).
23.Q. Zhang, L. Gao, and J. Guo, “Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis,” Applied Catalysis B: Environmental, 26, pp.207-215 (2000).
24.垰田博史著,張晶、楊健譯 光觸媒圖解,商周出版,(2003).
25.U. Diebold, “The surface science of titanium dioxide,” Surface Science Reports, 48, pp.53-229 (2003).
26.W. Shen, W. Zhao, F. He, and Y. Fang, “TiO2-based photocatalysis and its applications for wastewater treatment,” Progress in Chemistry, No.4 1998.
27.H. Yamashita, H. Nishiguchi, N. Kamada, M. Anpo, Y. Teraoka, H. Hatano, S. Ehara, K. Kikui, and L. Palmisano, “Photocatalytic reduction of CO2 with H2O on TiO2 and Cu/TiO2 catalysts,” Research on Chemical Intermediates, 20, pp.815-823 (1994).
28.M. A. Fox and M. T. Dulay, “Heterogeneous photocatalysis,” Chemical Reviews, 93, pp.341-357 (1993).
29.E. R. Bandala, S. Gelover, M. T. Leal, and C. Arancibia-Bulnes, A. Jimenez, and C. A. Estrada, “Solar photocatalytic degradation of aldrin,” Catalysis Today, 76, pp.189-199 (2002).
30.C. S. Turchi, and D. F. Ollis, “Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack,” Journal of Catalysis, 122, pp.178-192 (1990).
31.D. M. Mattox, “Sol-gel derived, air-baked indium and tin oxide films,” Thin Solid Films, 204, pp.25-32 (1991).
32.葉世墉,「二氧化鈦的合成與光催化性質的研究」,碩士論文,中央大學化學工程與材料工程研究所,中壢,(2005).
33.K. Juengsuwattananon, A. Jaroenworaluck, T. Panyathanmaporn, S. Jinawath, and S. Supothina, “Effect of water and hydrolysis catalyst on the crystal structure of nanocrystalline TiO2 powders prepared by sol-gel method,” physica status solidi (a): Applications and Materials Science, 204, pp.1751–1756 (2007).
34.D. Bahnemann, A. Henglein, L. Spanhel, “Detection of the intermediates of Colloidal TiO2-catalysed Photoreactions,” Faraday Discussions of Chemical Society, 78, pp.151-163 (1984).
35.M. D. Ward and A. J. Bard, “Photocurrent enhancement via trapping of photogenerated electrons of TiO2 particles,” Journal of Physical Chemistry, 86, pp.3599-3605 (1982).
36.X. Zhang, H. Yang, F. Zhang, and K. Y. Chan, “Preparation and characterization of Pt–TiO2–SiO2 mesoporous materials and visible-light photocatalytic performance,” Materials Letters, 61, pp.2231-2234 (2007).
37.W. Choi, A. Termin, and M. R. Hoffmann, “The Role of Metal Ion Dopants in quantum-Sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics,” Journal of Physical Chemistry, 98, pp.13669-13679 (1994).
38.A. M. Ektessabi, “Surface modification of biomedical implants using ion-beam-assisted sputter deposition,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 127/128, pp.1008-1014 (1997).
39.A. Hagfeldt and M. Gratzel, “Light-induced redox reactions in nanocrystalline systems,” Chemical Reviews, 95, pp.49-68 (1995).
40.D. Beydoun and R. Amal, “Implications of heat treatment on the properties of a magnetic iron oxidetitanium doxide photocatalyst,” Materials Science and Engineering B, 94, pp.71-81 (2002).
41.S. Chatterjee, S. Sarkar, and S. N. Bhattacharyya, “Colloidal ferric oxide: a new photosensitizer for grafting acrylamide onto cellulose acetate films,” Polymer, 34 (9), pp.1979-1980 (1993).
42.C. Pulgrain and J. Kiwi, “Iron oxide-mediated degradation, photodegradation, and biodegradation of aminophenols,” Langmuir, 11, pp.519-526 (1995).
43.Z. Zhang, C. Boxall, and G. H. Kelsall, “Photoelectrophoresis of colloidal iron oxides,” Colloids and Surface A: Physicochemical and Engineering Aspects, 73, pp.145-163 (1993).
44.P. Madhusudhan Rao, B. Viswanathan, and R. P. Viswanath, “Strong metal support interaction state in the Fe/TiO2 system — an XPS study,” Journal of Material Science, 30, pp.4980-4985 (1995).
45.A. B. Rives, T. S. Kulkarni, and A. L. Schwaner, “N2 and H2O adsorption on combinations of TiO2 and Fe2O3,” Langmuir, 9, pp.192-196 (1993).
46.D. E. Scaife, “Oxide semiconductors in photoelectrochemical conversion of solar energy,” Solar Energy, 25, pp.41-54 (1980).
47.Z. Zhang, C.-C. Wang, R. Zakaria, and J. Y. Ying, “Role of particle size in nanocrystalline TiO2-based photocatalysts,” Journal of Physical Chemistry B, 102, pp.10871-10878 (1998).
48.J. A. Navío, G. Colón, M. Macías, C. Real, and M. I. Litter, “Iron-doped titania semiconductor powders prepared by a sol-gel method. Part Ι: synthesis and characterization,” Applied Catalysis A: General, 177, pp.111-120 (1999).
49.L. Palmisano, V. Augugliam, A. Sclafani, and M. Schiavello, “Activity of chromium-ion-doped titania for the dinitrogen photoreduction to ammonia and for the phenol photodegradation,” Journal of Physical Chemistry, 92, pp.6710-6713 (1988).
50.J. Soria, J. C. Conesa, V. Augugliaro, L. Palmisano, M. Schiavello, and A. Sclafani, “Dinitrogen photoreduction to ammonia over titanium dioxide powders doped with ferric ions,” Journal of Physical Chemistry, 95, pp.274-282 (1991).
51.G. Martra, S. Coluccia, L. Marchese, V. Augugliaro, V. Loddo, L. Palmisano, and M. Schiavello, “The role of H2O in the photocatalytic oxidation of toluene in vapour phase on anatase TiO2 catalyst: A FTIR study,” Catalysis Today, 53, pp.695-702 (1999).
52.J. Herrmann, C. Gillard, J. Disdier, C. Lehaut, S. Malato, and J. Blanco, “New industrial titania photocatalysts for the solar detoxification of water containing various pollutants,” Applied Catalysis B: Environmental, 35, pp.281-294 (2002).
53.D.-C. Hurum, A.-G. Agrios, S.-E. Crist, K.-A. Gray, T. Rajh, and M.-C. Thurnauer, “Probing reaction mechanisms in mixed phase TiO2 by EPR,” Journal of Electron Spectroscopy and Related Phenomena, 150, pp.155-163 (2006).
54.J.-F. Jen, M.-F. Leu, and T.-C. Yang, “Determination of hydroxyl radicals in an advanced oxidation process with salicylic acid trapping and liquid chromatography,” Journal of Chromatography A, 796, pp.283-288 (1998).
55.X. Luo and D.-C. Lehotay, “Determination of hydroxyl radical using salicylate as a trapping agent by gas chromatography-mass spectrometry,” Clinical Biochemistry, 30, pp.41-46 (1996).
56.J. Marugán, D. Hufschmidt, M.-J. López-Muňoz, V. Selzer, and D. W. Bahnemann, “Photonic efficiency for methanol photooxidation and hydroxyl radical generation on silica-supported TiO2 photocatalysts,” Applied Catalysis B: Environmental, 62, pp.201-207 (2006).
57.P. Courtine and E. Bordes, “Mode of arrangement of components in mixed vanadia catalyst and its bearing for oxidation catalysis,” Applied Catalysis A: General, 157, pp. 45-65 (1997).
58.Y. Wang and C.-S. Hong, “TiO2-mediated photomineralization of 2-chloro-biphenyl: The role of O2,” Water Research, 34, pp. 2791-2797 (2000).
59.郭彥廷,「導電高分子與二氧化鈦之奈米複合材料的合成與性質探討」,碩士論文,中央大學化學研究所,中壢,(2002)。
60.黃欣栩,「UV/TiO2程序光催化降解水中單氯苯之研究」,博士論文,中央大學環境工程研究所,中壢,(2008)。
61.王淑娟,「液相光催化反應之氫氧自由基生成量測-以甲醇為自由基捕捉劑」,碩士論文,高雄第一科技大學環境與安全衛生工程系,高雄,(2006)。
62.L. Sun, and J. R. Bolton, “Determination of the quantum yield for the photochemical generation of hydroxyl radicals in TiO2 suspensions,” Journal of Physical Chemistry, 100, pp. 4127-4134 (1996).
63.D. Beydoun and R. Amal, “Novel photocatalyst: titania-coated magnetite. Activity and photodissolution,” Journal of Physical Chemistry B, 104, pp. 4387-4396 (2000).
64.J. A. Navío, G. Colón, M. Trillas, J. Peral, X. Domènech, J. J. Testa, J. Padrón, D. Rodríguez, and M. I. Litter, “Heterogeneous photocatalytic reactions of nitrite oxidation and Cr(VI) reduction on iron-doped titania prepared by the wet impregnation method,” Applied Catalysis B: Environmental, 16, pp. 187-196 (1998).
65.M. I. Litter and J. A. Navío, “Comparison of the photocatalytic efficiency of TiO2, iron oxides and mixed Ti(IV)---Fe(III) oxides: photodegradation of oligocarboxylic acids,” Journal of Photochemistry and Photobiology A: Chemistry, 84, pp. 183-193 (1994).
66.H. Fujii, M. Ohtaki, K. Eguchi, and H. Arai, “Preparation and photocatalytic activities of a semiconductor composite of CdS embedded in a TiO2 gel as a stable oxide semiconducting matrix,” Journal of Molecular Catalysis A: Chemical, 129, pp. 61-68 (1998).
67.A. Henglein, “Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles,” Chemical Reviews, 89, pp. 1861-1873 (1989).
68.S. Chatterjee, S. Sarkar, and S. N. Bhattacharyya, “Colloidal ferric oxide: a new photosensitizer for grafting acrylamide onto cellulose acetate films,” Polymer, 34, pp. 1979-1980 (1993).
69.A. Ansari, J. Peral, X. Domènech, Rafael Rodríguez-Clemente, A. Roig, and E. Molins, “Photo-oxidation of sulfite ions in the presence of some iron oxides,” Journal of Photochemistry and Photobiology A: Chemistry, 87, pp. 121-125 (1995).
|