博碩士論文 953208014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:3.15.228.171
姓名 何其駿(Ci-Jyun He)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 金屬氫化物儲氫罐吸放氫氣之熱流分析
(Thermal-Fluid analysis of the metal hydriding and dehydriding processes in a hydrogen storage tank)
相關論文
★ 溫度調變對二元合金固液介面形態穩定的影響★ 濃度調變對二元合金固液介面形態穩定的影響
★ 圓錐平板型生物反應器週期性流場研究★ 圓錐平板型生物反應器二次週期流場研究
★ 圓錐平板型生物反應器脈動式流場研究★ 濃度調變對單向固化形態穩定的影響
★ 圓錐平板型生物反應器脈動式二次流場研究★ 模擬注流式生物反應器之流場及細胞生長
★ 週期式圓錐平板裝置之設計與量測★ 模擬注流式生物反應器之細胞培養研究
★ 軟骨細胞在組織工程支架之培養研究★ 細胞在組織工程支架之生長與遷移
★ 冷電漿沉積類鑽碳膜之製程模擬分析★ 格狀自動機探討組織工程細胞體外培養研究
★ 細胞在注流式生物反應器之生長研究★ 週期式圓錐平板裝置之流場分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文針對LaNi5儲氫罐之吸放氫熱流特性進行數值模擬分析,儲氫罐內部分成上下兩種結構,下層為儲氫合金所構成的多孔性介質區,上層則為供合金膨脹所預留的膨脹區域,對此結構建立了吸氫與放氫兩種皆可適用的數學模型。由於吸氫時會生成熱,放氫時則須提供合金熱能來轉換成化學能,因此利用能量方程式來分析熱的問題,並且假設反應時合金與氣體間皆達熱平衡。氫氣和合金的質量變化以連續方程式描述。對於多孔介質的合金區域與膨脹區分別使用佛許海默-布里克曼與那維爾-史托克斯方程式來描述流動的問題,最後將上述方程式利用COMSOL Mutilphysics 3.2 (COMSOL Inc., Sweden) 進行有限元素法數值計算分析。結果發現吸放氫時,內部流場會受到溫度分布不均勻的影響,造成氣體密度的改變而有明顯的變化。此外,由於壁面有較好的熱交換效果,可以有效的排出吸氫產生的多餘熱量或適時提供放氫反應所需的熱,因此有較快速的反應變化;罐內靠中心的部分,熱傳需要穿越合金才能達反應位置,過程中多了合金所造成的熱阻,因此內部位置的合金無法有效利用。針對一些可調整的外在因素做為控制變因,模擬計算不同環境條件下的差異,結果發現改變外部流體溫度和入口設定的氣體壓力大小,對於吸氫與放氫的速率有明顯的影響,但是都有其影響的極限存在;而改變膨脹區域高度和吸放氫氣出入口直徑大小,對於整體吸放氫的速率皆無顯著影響。
摘要(英) A study of the hydrogen storage and usage using LaNi5 metal hydride is presented. The metal hydride tank is considered to consist of a porous medium (hydride bed) and an expansion volume (gaseous phase). For this storage structure a mathematical model including both hydriding and dehydriding processes is developed. When metal hydrides absorb hydrogen, they release heat. Conversely, when they absorb heat, the alloys release hydrogen. Therefore we use the energy equation to analyze the associated heat transfer problem based on assuming that thermal equilibrium has been reached between the metal hydride and hydrogen gas. The mass balance between the hydrogen gas and metal hydride is described in terms of the continuous equation. The Forchheimer-Brinkman and Navier-Stokes equations are used to describe the gas flow within the porous medium and expansion volumes respectively. The mathematical model developed was solved using a finite element code, COMSOL Multiphysics 3.2 (COMSOL Inc., Sweden). Results show during the process of either absorbing or releasing hydrogen, the inside flow influenced by the fact that the temperature profile is not uniform in the tank has a major impact on the changes of the gas density. Hydride absorption or desorption both take place faster neat the tank wall because there is better heat exchange near the wall. Using the simulation model, we also study how the hydrogen reaction rates change with the parametric values. Result show changing the external cooling/heating temperature or the inlet/outlet gas pressure has profound influences on the hydriding and dehydriding speeds. In contrast, the inlet diameter and expansion height have virtually nothing to do with the hydriding and dehydriding rates.
關鍵字(中) ★ 氫
★ 金屬氫化物
★ 儲氫罐
★ 鑭鎳
★ 數值模擬
關鍵字(英) ★ metal hydride
★ simulation
★ LaNi5
★ Hydrogen
論文目次 摘要…………………………………………… Ⅰ
誌謝…………………………………………… Ⅲ
目錄…………………………………………… Ⅳ
表目錄………………………………………… Ⅵ
圖目錄………………………………………… Ⅶ
符號說明……………………………………… XI
第一章 緒論………………………………… 1
1.1 前言……………………………………… 1
1.2 儲氫合金簡介…………………………… 2
1.3 儲氫合金反應機制……………………… 3
1.3.1 吸放氫原理…………………………… 3
1.3.2 P-C-I曲線……………………………… 4
1.4 文獻回顧………………………………… 5
1.5 研究動機 ………………………………… 7
第二章 物理系統與數學模型……………… 8
2.1 物理系統………………………………… 8
2.2 膨脹區域數學模型……………………… 10
2.2.1 連續方程式…………………………… 10
2.2.2 動量方程式…………………………… 10
2.2.3 能量方程式…………………………… 11
2.3 多孔性介質區數學模型………………… 12
2.3.1 連續方程式…………………………… 12
2.3.2 動量方程式…………………………… 13
2.3.3 能量方程式…………………………… 14
2.4 合金吸放氫動力學……………………… 15
2.4.1 合金吸放氫速率……………………… 15
2.4.2 合金吸放氫平衡壓力………………… 16
2.5 初始條件與邊界條件…………………… 18
2.5.1 初始條件……………………………… 18
2.5.2 吸放氫氣模型邊界條件……………… 19
第三章 數值方法…………………………… 21
3.1 COMSOL簡介…………………………… 21
3.2 前處理…………………………………… 22
3.3 誤差與精確度…………………………… 23
第四章 結果與討論………………………… 24
4.1 數學模型的驗證………………………… 24
4.2 填充氫氣模擬分析……………………… 25
4.2.1 吸氫過程分析………………………… 25
4.2.2 參數改變對於吸氫速率的影響……… 27
4.3 釋放氫氣模擬分析……………………… 29
4.3.1 放氫過程分析………………………… 29
4.3.2 參數改變對於放氫速率的影響……… 31
4.3.3 熱對流效應的影響…………………… 32
第五章 結論與未來展望…………………… 33
參考文獻…………………………………… 35
附表………………………………………… 38
附圖………………………………………… 40
參考文獻 [1] Alazmi, B. and Vafai, K., “Analysis of variants within the porous media transport models,” Journal of Heat Transfer 122 (2000) 303-326.
[2] Aldas, K., Mat, D. and Kaplan, Y., “A three-dimensional mathematical model for absorption a metal hydride bed,” International Journal of Hydrogen Energy 27 (2002) 1063-1069.
[3] Askri, F., Jemni, A. and Nasrallah S. B., “Prediction of transient heat and masstransfer in a closed metal-hydrogen reactor,” International Journal of Hydrogen Energy 29 (2004) 195-208.
[4] Dhaou, H., Askri, F., Salah, M. B., Jemni, A. and Nasrallah. S. B., “Measurement and modeling of kinetics of hydrogen sorption by LaNi5 and two related pseudobinary compounds,” International Journal of Hydrogen Energy 32 (2007) 576-587
[5] Goodell, P. D. and Rudman, P. S., “Hydriding and dehydriding rates of the LaNi5-H system,” Journal of the Less-Common Metals 89 (1983) 117-125
[6] Gopal, M. R. and Murthy, S. S., “Studies on heat and mass transfer in metal hydride beds,” International Journal of Hydrogen Energy 20 (1995) 911-917.
[7] Graham, T., “On the Relation of hydrogen to palladium,” Journal of the Franklin Institute 87 (1869) 256-266
[8] Jemni, A. and Nasrallah, S. B., “Study of two-dimensional heat and mass transfer during absorption in a metal-hydrogen reactor,” International Journal of Hydrogen Energy 20 (1995a) 43-52.
[9] Jemni, A. and Nasrallah, S. B., “Study of two-dimensional heat and mass transfer during desorption in a metal-hydrogen reactor,” International Journal of Hydrogen Energy 20 (1995b) 881-891.
[10] Jemni, A., Nasrallah, S. B. and Lamloumi J.,“Experimental and theoretical study of a metal-hydrogen reactor,” International Journal of Hydrogen Energy 24 (1999) 631-644.
[11] Kaplan, Y. and Veziroglu, N., “Mathematical modeling of hydrogen storage in a LaNi5 hydride bed,” International Journal of Hydrogen Energy 26 (2001) 957-963.
[12] MacDonald, B. and Rowe, A., “A thermally coupled metal hydride hydrogen storage and fuel cell system,” Journal of Power Sources 161 (2006a) 346-355.
[13] MacDonald, B. and Rowe, A., “Impacts of external heat transfer enhancements on metal hydride storage tanks,” International Journal of Hydrogen Energy 31 (2006b) 1721-1731.
[14] Martin, M., Gommel, C., Borkhart, C. and Fromm, E., “Absorption and desorption kinetics of hydrogen storage alloys, ” Journal of Alloys And Compounds 238 (1996) 193-201
[15] Mat, D. and Kaplan, Y., “Numerical study of hydrogen absorption in an Lm–Ni5 hydride reactor,” International Journal of Hydrogen Energy 26 (2001) 957-63.
[16] Mayer, U., Groll, M. and Supper W., “Heat and mass transfer in metal hydride reaction beds: experimental and theoretical results,” Journal of the Less-Common Metals 131 (1987) 235-244.
[17] Nakamura, Y., Sato, K., Fujitani, S., Nishio, K., Oguro, K. and Uehara, I., “Lattice expanding behavior and degradation of LaNi5-based alloys,” Journal of Alloys And Compounds 267 (1998) 205-210
[18] Nasrallah S. B. and Jemni, A., “Heat and mass transfer models in metal-hydrogen reactor,” International Journal of Hydrogen Energy 22 (1997) 67-76.
[19] Reilly, J. J. and Wiswall, R. H., “The reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4,” Inorganic Chemistry 7 (1968) 2254
[20] Reilly, J. J. and Wiswall, R. H., “Formation and properties of iron titanium hydride,”Inorganic Chemistry 13 (1974) 218
[21] Sandrock, G., “A panoramic overview of hydrogen storage alloys from a gas reaction point of view,” Journal of Alloys and Compounds 293 (1999) 877-888.
[22] Sandrock, G. and Thomas, G., IEA/DOE/SNL Hydride Database, http://hydpark.ca.sandia.gov
[23] Sinha, V. K. and Wallace W. E., “The hyperstoichiometric ZrMn1+xFe1+y-H2 system Ⅱ:hysteresis effect,” Journal of the Less-Common Metals 91 (1983) 239-249
[24] Suda, S. and Kobayashi, N., “Reaction kinetics of metal hydrides and their mixtures,” Journal of the Less-Common Metals 73 (1980) 119-126
[25] Supper, W., Groll, M. and Mayer, U., “Reaction kinetics of metal hydrides and their mixtures,” Journal of the Less-Common Metals 104 (1984) 279-286
[26] Vucht, J. H. N. V., Kuijpers F. A. and Bruning H. C. A. M., “Reversible room-temperature absorption of large quantities of hydrogen by intermetallic compounds,” Philips Research Repts 25 (1970) 133-140
[27] White F. M., Fluid mechanics. 4th Ed., NewYork: McGraw-Hill; 1999.
[28] Züttel, A., “Materials for hydrogen storage,” Materials Today (2003) September 24-33
[29] Çengel, Y. A. and Boles, M. A., Thermodynamics an Engineering Approach 4th Ed, NewYork: McGraw-Hill; 2002
[30] 胡子龍,“儲氫材料,” 化學工業出版社, (2002) 45-46
[31] 邱育慈,“走進低碳社會,台灣準備好了嗎,” 科學人雜誌, 56 (2006) 34-40
指導教授 鍾志昂(Chih-Ang Chung) 審核日期 2008-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明