以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:99 、訪客IP:3.137.220.166
姓名 蔣少勇(Shao-yung Chiang) 查詢紙本館藏 畢業系所 環境工程研究所在職專班 論文名稱 以蓄熱式焚化爐(RTO)處理銅箔基板業排氣中VOCs之效率探討
(Efficiencies of RTOs in Removing VOCs from Copper Clad Laminate Processes)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 近年來,高科技產業在台灣蓬勃發展,而相關產業大量使用揮發性有機物也對環境造成顯著的影響。目前可用以去除VOCs的方法很多,經焚化後之VOCs可轉變成CO2及H2O(g)等低環境衝擊之氣體,較無後續處理之問題,使得國內主要高科技廠均使用焚化爐處理廢氣。本研究針對台灣某大型CCL廠之三套蓄熱式焚化爐,分別嘗試於高風量高溫度(條件一)、高風量低溫度(條件二)、低風量低溫度(條件三)及低風量高溫度(條件四)下,比較NMHC之去除效率、NOx及SO2之生成量。NMHC的去除效率方面,發現受溫度之影響較大,溫度越高,去除效率較佳。風量(停留時間)之影響較小,但仍可發現風量越小(停留時間越長)時,效率較好。四個測試參數中,效率由高至低分別為「條件一≈條件四>條件三>條件二」。在NOx生成方面,以Thermal NOx及Prompt NOx兩個機制為主,然而RTO#2有來自製程含有N原子鍵結的DMF,使得經過焚化之廢氣,大量生成NOx。若以操作條件來看,當溫度越高,停留時間越久,生成之NOx越高,由高至低分別為「條件四>條件三>條件一>條件二」。在SO2生成方面,來源主要來自低硫鍋爐油之硫份,因此當焚化爐溫度不易靠VOCs燃燒的熱值來維持時,鍋爐油用量則增加,亦使SO2排放量增加,由高至低分別為「條件二>條件三>條件四>條件一」。在RTO之油耗方面,油耗之多寡顯示出進流VOCs燃燒產生之熱值是否適合該操作條件,由高至低分別為「條件二>條件三>條件四≈條件一」;油耗量又會影響尾氣SO2排放,研究結果發現油耗與尾氣SO2之濃度呈現正相關。在操作成本方面,若考慮將初設費用視為折舊攤提費用(分八年攤提),則A廠三套RTO之年操作維護費用為1865.2萬元;若不考慮攤提費用,則降為975.2萬元。
摘要(英) High-tech industries apply various volatile organic ccompounds (VOCs) in the processes and the emission of VOCs causes serious impact to the environment. Several methods are available to remove VOCs from processes, for example, incineration is a method to convert VOCs to harmless gases including CO2 & H2O(g), which have much less impact to the environment. Nowadays, more and more high-tech companies apply RTO to destory VOCs from waste gas streams. This research is focus on comparison of removal efficiency of NMHC and formation of NOX & SOX with four different operating conditions, condition I: high flowrate with high temperature; condition II: high flowrate with low temperature; condition III: low flowrate with low temperature; condition IV: low flowrate with high temperature, in a Copper Clad Laminate (CCL) plant which has three sets of RTO.
The result shows that temperature has great effect on the removal efficiency of NMHC, the higher temperature, the better removal efficiency. The flowrate has less effect on removal efficiency. However, the smaller flowrate (the longer HRT), the higher removal efficiency. The order of the NMHC removal efficiencies achieved with are condition I & IV > condition III > condition II. On the formation of NOX, the thermal NOX and prompt NOX are the major formation mechanisms. Large amounts of NOX were measured in flue gas of RTO#2, because the waste gas stream contains high concentration of DMF. The results also indicate that higher temperature and longer HRT result in greater formation of NOX. The order of NOx formation are condition IV > condition III > condition I > condition II. As for the formation of SO2, the main source of SOX in flue gas comes from fuel oil which contains sulfur. It is necessary to control temperature in RTO by using fuel oil when the combustion heat of VOCs is not enough to maintain pre-set temperature in system. Therefore, SO2 emission increases with increasing of fuel consumption. The condition II has the largest emission, follows by condition III and IV, the condition I has less emission of SO2.
The fuel consumption of RTO is related to combustion heat of VOCs. The order of fuel consumptions in RTO are condition II > condition III > condition I & IV. The fuel consumption will affect emission of SO2 in flue gas and SO2 emission is proportional to fuel consumption. The annual operating & maintenance cost of RTOs in plant A is estimated as NT$ 9,752,000. On the other hand, the annual operating & maintenance cost of RTOs in Plant A will be NT$18,652,000 if depreciation and amortization is included.
關鍵字(中) ★ 蓄熱式焚化爐
★ VOCs
★ NOx
★ SO2關鍵字(英) ★ VOCs
★ RTO
★ NOX
★ SO2論文目次 摘 要........................................................................................................................................i
Abstract......................................................................................................................................ii
誌 謝......................................................................................................................................iii
目 錄......................................................................................................................................iv
圖目錄.....................................................................................................................................vii
表目錄......................................................................................................................................ix
一、 前言.................................................................................................................................1
1.1 研究動機.....................................................................................................................1
1.2 研究目的.....................................................................................................................2
二、 文獻回顧..........................................................................................................................3
2.1 銅箔基板產業.............................................................................................................3
2.1.1 銅箔基板..........................................................................................................3
2.1.2 產業概況..........................................................................................................4
2.1.3 主要空氣汙染物種..........................................................................................5
2.2 揮發性有機物管制與控制.........................................................................................9
2.2.1 定義與管制現況..............................................................................................9
2.2.2 控制技術..........................................................................................................9
2.2.3 焚化技術........................................................................................................12
2.3 RTO 專論...................................................................................................................27
2.3.1 RTO 床體的設計............................................................................................27
2.3.2 蓄熱材............................................................................................................31
三、 研究方法與步驟............................................................................................................33
3.1 研究方法...................................................................................................................33
3.2 研究流程...................................................................................................................33
3.3 採樣方法與監測設備...............................................................................................35
3.3.1 採樣方法........................................................................................................35
3.3.2 監測設備........................................................................................................35
3.3.3 氣體清單........................................................................................................35
3.4 設計之操作參數.......................................................................................................36
3.4.1 廢氣流程........................................................................................................36
3.4.2 廢氣組成........................................................................................................36
3.4.3 溫度參數........................................................................................................36
3.4.4 風量變化........................................................................................................38
四、 結果與討論....................................................................................................................41
4.1 去除效率...................................................................................................................41
4.1.1 溫度對去除效率之影響................................................................................41
4.1.2 風量對去除效率之影響................................................................................48
4.1.3 溫度與風量之影響........................................................................................48
4.2 NOx與SO2...................................................................................................................49
4.2.1 NOx的生成......................................................................................................51
4.2.2 SO2的生成.......................................................................................................57
4.3 油耗量推估...............................................................................................................63
4.3.1 由硫平衡推測RTO 系統耗油量..................................................................65
4.3.2 由碳平衡推測RTO 系統耗油量..................................................................66
4.4 A 廠RTO 設置及操作費用分析..............................................................................71
4.4.1 RTO 設置與操作費用....................................................................................71
4.4.2 產量與污染物之相關性................................................................................73
4.4.3 污染物去除成本............................................................................................77
4.5 尾氣生成物種...........................................................................................................81
4.6 碳平衡.......................................................................................................................81
4.7 溶劑回收可行性評估...............................................................................................83
4.8 排放係數法與實測法對空污費用之影響...............................................................87
4.8.1 排放係數法....................................................................................................88
4.8.2 檢測法............................................................................................................88
4.9 重覆檢測結果探討...................................................................................................89
4.9.1 各污染物之變化............................................................................................89
4.9.2 含氧量之相關性............................................................................................93
4.9.3 質量平衡........................................................................................................94
五、 結論與建議....................................................................................................................97
5.1 結論...........................................................................................................................97
5.2 建議...........................................................................................................................98
參考文獻.................................................................................................................................99
參考文獻 Amelio, M. and Morrone, P., “Numerical Evaluation of the Energetic Performances of Structured and Random Packed Beds in Regenerative Thermal Oxidizers”, Applied Thermal Engineering, Vol. 27, pp. 762-770 (2007).
Anguil Environmental Systems,http://www.anguil.com/。
Bannai, M., Houkabe, A., Furukawa, M., Kashiwagi, T., Atsushi A., Takuya Y. and Hiroyuki Y., “Development of Efficiency-Enhanced Cogeneration Systam Utilizing High-Temperature Exhasust-Gas from a Regenerative Thermal Oxidizer for Waste Volatile-Organic-Compound Gases”, Applied Energy, Vol. 83, pp. 929-942 (2006).
Brooks, J., “Help in Controlling VOCs in the Paint-Finishing Industry”, Planting and Surface Finishing, Vol. 12-14 (1994).
Cannon, B. J., “Dual-ing RTOs Work Together”, Pollution Engineering, Feb., pp. 16-20 (2005).
Jerry J.W. Yuan., “Prediction of NOx Emissions in Recovery Boilers-An Introduction to NOx Module”, Process Simulations Ltd., Canada, pp. 1-13 (1999).
Kalmor, http://www.karumoa.co.jp/。
Khan, F. I. and Ghoshal, A. Kr., “Removal of Volatile Organic Compounds from Polluted Air”, Journal of Loss Prevention in the Process Industries, Vol. 13, pp. 527-545 (2000).
Koch Knight LLC, http://www.kochknight.com/。
Radian Corporation, “Control Techniques for Volatile Organic Emissions from Stationary Source”, EPA 450/2-78-022, pp. 4 (1978).
Rauschert, http://www.rauschert-tk.de/cms/front_content.php。
Sims, P., “RTOs: The Media Matters”, Finishing Today, Feb., pp. 32-35 (2007).
Wark, K.h, Warner, C. F. and Wayne T. D., “Air Pollution”, Addison-Wesley, 3rd, pp. 403 (1998).
工業技術研究院,「臭氧處理程序設計評估技術」,工業技術研究院材料與化工研究所,1991。
王志方,「銅箔基板產業概況」,台灣工業銀行,2006。
中國石油股份有限公司,http://www.cpc.com.tw/big5/home/index.asp。
任曉莉,「燃燒與大氣污染」,大氣污染控制工程,太原工業學院,2002。
行政院環境保護署,「半導體製造業空氣污染管制及排放標準」,民國88年發佈,民國91年修正,2001。
沈明宗,「實場蓄熱式焚化爐處理排氣中揮發性有機物之操作性能研究」,碩士論文,國立中山大學環境工程研究所,2001。
林素琴,「銅箔基板廠商動態」,ITIS產業資訊服務網,2007。
周明顯,「揮發性有機物及臭味控制技術」,環保資訊月刊,第54期,2002。
洪文雅,「揮發性有機廢氣處理技術簡介」,台灣環保產業雙月刊,第21期,2003。
翁維祥,「銅箔基板環氧樹脂含浸液之研究」,碩士論文,國立中央大學化學工程研究所,2001。
張豐堂,「印刷業/膠帶業焚化處理技術及案例介紹」,傑智環境科技股份有限公司,2004。
張豐堂、林育旨、白曛綾、白寶實,「提升既有沸石濃縮轉輪焚化系統效能之實廠研究案例」,半導體科技,第41期,2003。
產業經濟與趨勢研究中心,「全球PCB 關鍵原物料市場與供應分析」,工業技術研究院,2005。
許朝翔,「以粒狀觸媒氧化甲苯之研究」,碩士論文,國立中山大學環境工程研究所,2007。
陳文杰,「蓄熱式燃燒技術」,節約能源技術原理分析及實例應用,工業技術研究院,2003。
章裕民,「排放量規模及最佳可行控制技術介紹」,空污專責人員在職訓練教材,2006。
粘愷峻,「VOCs防制設備之BACT選用原則說明與防制設備設計應注意之重點」,固定污染源許可及管理計畫(97及98年度)稽查檢測前作業宣導說明會,高雄市環保局,2008。
黑正明,「以蓄熱式焚化爐處理含氯揮發性有機物之操作性能研究」,碩士論文,國立中山大學環境工程研究所,2002。
經濟部,「大陸經濟情勢評估」,中華民國經濟部,1998。
蔡宜璋,「銅箔基板產業」,金鼎證券投資顧問股份有限公司,2007。
鄭凱文,「淺談半導體製程廢氣處理技術」,台灣環保雙月刊,2003。
環訓所,「燃燒原理與污染控制」,空氣污染防制專責人員訓練教材,1996。
環訓所,「空氣污染防治法規」,行政院環境保護署環境保護人員訓練所,2001。
環境保護署,hppt://www.epa.gov.tw/。
蘇佳慶,「蓄熱式焚化系統於處理VOCs之應用」,中環環境工程顧問企業股份有限公司,2002。
指導教授 張木彬(Mon-Been Chang) 審核日期 2009-7-28 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare