博碩士論文 953402005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:67 、訪客IP:3.16.50.172
姓名 葉銘欽(Ming-Chin Yeh)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 以微觀影像解析多孔隙瀝青混凝土耐久特性之研究
(Microstructure Properties of PAC: Implications on Durability and Performance)
相關論文
★ 公共工程統包模式執行專案成員間問題 之研究★ 水泥製程於資源再利用之研究
★ 防水毯的生管與品管之探討★ 建置生命紀念園區營運階段管理模式之研究 以新北市某民間公共紀念園區為例
★ 軍用機場跑道鋪面維護管理暨搶修作業機制之研究★ TAF 檢驗機構認證申請之研究- 以混凝土後置式化學錨栓檢驗為例
★ 利用UML建構實驗室資訊管理平台-以合約審查為例★ 營建施工管理導入即時性資訊傳遞工具功能需求之研究
★ 鋪面養護決策支援分析模式之研究★ 營建材料實驗室量測系統評估及誤差分析
★ 以績效為基礎的公路養護組織與機制之研究★ 智慧型鋪面檢測車平坦度量測驗證與應用
★ 公路設施養護管理程序建立及成本分析之研究-以IDEF方法建立鋪面養護作業程序★ 利用花崗岩及玻璃回收料製造功能性人造石材之研究
★ 自動化鋪面平整度量測分析與破壞影像偵測系統之研究★ 鋪面缺陷影像辨識系統應用於路網檢測之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 多孔隙瀝青混凝土具有排除自由水之效果主要原因為空隙含量高,然而高空隙含量下使得瀝青油膜與空氣接觸面積增加而加速瀝青老化,此外亦增加水侵害之機率而造成多孔隙瀝青混凝土鋪面劣化。本研究採PAC老化前後之瀝青膠泥物理性質及混合料之力學性質做為評估老化之方法。老化對瀝青膠泥性能參數之影響評估方法為瀝青膠泥之針入度、軟化點及流變行為;老化對PAC力學參數之影響評估方法為車轍輪跡試驗、磨耗試驗及回彈模數分析,另外以煮沸法、浸水殘餘強度試驗及浸水輪跡試驗做為評估水侵害作用。最後以量測之瀝青膠漿厚度及殘餘針入度比(RP)與相關評估老化之參數進行關聯性分析,藉以了解PAC老化後之服務績效。
另外,PAC之服務績效除考量材料組成特性對載重、老化、水侵害作用下之結構耐久性影響外,尚須考量PAC之功能性及安全性,其中功能性為透水率及減噪量,而安全性則為鋪面摩擦值。影響PAC功能性之重要因素為空隙率,因此,本研究利用電腦斷層掃瞄及影像處理技術探討PAC空隙之空間訊息,分析不同材料特性(瀝青膠泥等級、標稱粒徑)及夯實能量分析對空隙分布、不同載重次數下對PAC孔隙閉合以及孔隙率峰度對PAC耐久性之影響。影響鋪面摩擦力之關鍵因子為表面紋理,因此本研究以高解析度紋理掃描儀(High Definition Scan Texture Machine, HDSTM)進行不同載重次數之PAC試體2D紋理量測及英式擺錘儀(British Portable Tester, BPT)抗滑量測(British Portable Number, BPN),藉由表面紋理及摩擦力試驗資料探討2D紋理與BPN間之關聯性。
研究結果顯示,採用高黏滯度之瀝青膠泥之PAC具有較厚之油膜厚度,且經由統計分析結果油膜厚度與級配組成、瀝青膠泥種類及填充料有關。實驗室模擬老化對PAC之影響得知,使用高黏滯度之改質瀝青老化程度較為緩慢,RP值為69-83,其餘材料之RP值為32-42。力學性質試驗方面,皆以採用高黏滯度之改質瀝青者較佳,流變試驗結果發現於60℃時,使用改質Ⅲ型瀝青膠泥之G*/Sinδ為最高,另外針對材料老化後之抗凍融分析,標稱粒徑12.5mm之PAC試驗結果較19.0mm者佳。
於X-ray CT掃描部分,藉由CT掃描後之圖像進行影像分析,藉由微觀觀察了解結構特性。分析結果得以量化連通孔隙率、半連通孔隙率及封閉孔隙率,量化結果顯示PAC試體孔隙中大部分為連通孔隙率,而半連通孔隙率及封閉孔隙率之總量小於1%。而不同夯實能量也造成試體孔隙分布不同,此外,標稱粒徑19.0mm之PAC孔隙率及連通孔隙率較12.5mm者多。最後由不同載重次數下之PAC表面紋理及摩擦力試驗結果得知,兩者變化之趨勢相同,於建構2D紋理參數與BPN之關聯性,均有達0.5之中度相關性,因受載後試體之紋理量測基準面會產生變化,若進行基準面修正,將可提高2D紋理參數與BPN之關聯性。
摘要(英) The durability of porous asphalt concrete (PAC) is an important aspect when it comes to developing concrete mixtures. State-of-the-art technology design of PAC is based on the volumetric properties of the mixture. This approach ensures adequate mixture functionality, but it does not address the issue of the durability. The goal of this study is to characterize microstructure properties of PAC. Film thicknesses are observed and measured by polarized optical microscopy while spatial distribution and continuity of air voids are characterized using X-ray computed tomography and image analysis techniques. With the help of a high resolution scan texture machine that includes 2D laser charge-coupled device and British portable tester, the relationship between 2D texture and friction are established. We have developed a wide array of analytical tools for the characterization of the microstructure properties of PAC, which is key to design and simulations.
關鍵字(中) ★ 耐久特性
★ 多孔隙瀝青混凝土
★ 電腦斷層
★ 雷射紋理
關鍵字(英) ★ PAC
★ Durability
★ X-ray CT
★ 2D texture and friction
論文目次 目錄
摘要 I
ABSTRACT III
目錄 V
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 3
1.4 研究範圍 3
第二章 文獻回顧 5
2.1 多孔隙瀝青混凝土鋪面研究現況 5
2.1.1 各國使用經驗 5
2.1.2 相關功能效益 9
2.1.3 破壞型態及維護 23
2.3.4 耐用年限評估 27
2.2 多孔隙瀝青混凝土耐久性劣化因子 31
2.2.1 老化行為 31
2.2.2 水侵蝕機理 33
2.2.3 油膜厚度之影響 37
2.3 影像處理技術於瀝青混凝土材料特性之應用 39
2.4 瀝青混凝土微觀結構評估方法 40
2.4.1 壓汞法 40
2.4.2 氣體吸附法 41
2.4.3 光學法 42
2.4.4 X射線層析攝像法 42
2.4.5 電腦斷層影像掃描 43
2.5 X-RAY應用於瀝青混凝土微觀特性解析 44
2.6 鋪面紋理與摩擦力 48
2.6.1巨/微觀鋪面紋理 48
2.8.2 鋪面紋理量測技術 50
2.8.3 鋪面紋理與摩擦力之關聯性 50
第三章 研究計畫 53
3.1 試驗材料 53
3.1.1 瀝青膠泥 53
3.1.2 粒料級配與較適油量 55
3.1.3 纖維材料基本物性試驗 56
3.2 試體製作 57
3.2.1 馬歇爾試體製作 57
3.2.2車轍輪機試體製作 57
3.3 瀝青混凝土試驗 59
3.3.1 回彈模數試驗 59
3.3.2 靜態潛變試驗 60
3.3.3 間接張力試驗 61
3.3.4 實驗室透水試驗 62
3.3.5 抗滑試驗 64
3.3.6 水份敏感度分析 65
3.4 微觀性質觀察 67
3.4.1膜厚偏光顯微鏡觀測 67
3.4.2孔隙CT掃描 68
3.4.3紋理雷射量測 69
3.5 分析方法 71
3.4.1 數位影像處理 71
3.4.2分析軟體 74
第四章 多孔隙瀝青混凝土耐久性評估 77
4.1 配合設計結果 77
4.2 老化前後對性能參數之影響 81
4.2.1 針入度 82
4.2.2 軟化點 83
4.2.3 流變行為 84
4.2.4 煮沸試驗結果 86
4.2.5 浸水殘餘強度試驗 86
4.2.6 車轍輪跡試驗 87
4.2.7 浸水車轍輪跡試驗 88
4.2.8 磨耗試驗 89
4.2.9 回彈模數分析 90
4.3瀝青膠漿微觀型態觀察及解析 92
4.3.1油膜厚度量測結果分析 92
4.3.2 瀝青膠漿微觀型態與力學性質之關係 94
第五章CT影像之孔隙特徵擷取平台開發及驗證 97
5.1 X-RAY CT 掃描之孔隙影像解析度 97
5.2 CT孔隙影像顯示平台 98
5.3 PAC孔隙辨識量化系統 100
5.4 孔隙分類驗證 103
第六章 多孔隙瀝青混凝土微觀結構特性 107
6.1 孔隙影像量化結果及分布特性 108
6.2 壓實方法對PAC孔隙率之影響 112
6.3 載重作用對PAC孔隙率之影響 113
6.4 孔隙特徵參數與性能之關係 115
第七章 多孔隙瀝青混凝土紋理與抗滑分析 118
7.1 二維紋理參數分析 123
7.1.1 HWTT(dry)之紋理結果分析 123
7.1.2 HWTT(wet)之紋理結果分析 125
7.1.3 PAC/OGFC紋理比較分析 128
7.2鋪面防滑性能分析 129
7.2.1 HWTT(dry)之防滑性能分析 129
7.2.2 HWTT(wet)之防滑性能分析 131
7.2.3 PAC/OGFC防滑比較分析 132
7.3多孔隙瀝青鋪面紋理與抗滑力相關性探討 133
7.3.1 載重後之表面紋理與抗滑力之關係 133
7.3.2 PAC/OGFC表面紋理與抗滑力之預測 135
7.3.3 載重壓力分佈與防滑特性解析 137
第八章 結論與建議 141
8.1 結論 141
8.2 建議 142
參考文獻 143
圖目錄
圖1.1 研究架構圖 4
圖2.1 空隙分類圖 10
圖2.2不同鋪面型式之抗滑試驗結果 13
圖2.3 開放級配鋪面孔隙率與熱傳導係數之關係 22
圖2.4 PAC鋪面老化行為示意圖 24
圖2.5 國道六號PAC鋪面鬆脫破壞處 24
圖2.6多孔隙路面選址不佳-落塵量大 24
圖2.7多孔隙路面選址不佳-孔隙阻塞 25
圖2.8 道路線形不佳路面積水 25
圖2.9 多孔隙路面下方埋設滲流管 25
圖2.10 埋設滲流管排水狀況 25
圖2.11 黏結力不足,鋪面破壞 26
圖2.12 鋼橋板鏽蝕 26
圖2.13 不同折現率之多孔隙鋪面生命週期成本 30
圖2.14 瀝青混凝土剝脫機理示意圖 34
圖2.15環境模擬系統示意圖 36
圖2.16 CT技術試體空隙分佈 45
圖2.17圖像分析技術試體空隙分佈 45
圖2.18 空間體積含量和空隙大小分佈圖 47
圖2.19巨觀紋理與微觀紋理示意圖 48
圖2.20各種狀態下之紋理值分布 49
圖2.21鋪面粗細紋理之摩擦力與車速關聯圖 51
圖2.22 魏納/舒爾茨磨耗實驗儀器 51
圖2.23 鋪面參數因子示意圖 52
圖3.1 流變行為試驗儀 55
圖3.2 馬歇爾夯壓機 57
圖3.3 車轍試體滾壓機 58
圖3.4 車轍試體壓實示意圖 58
圖3.5 瀝青混凝土回彈模數試驗 60
圖3.6 間接張力試驗 62
圖3.7室內透水試驗器示意圖 63
圖3.8室內透水試驗 63
圖3.9單擺式手提輕便抗滑儀 65
圖3.10 自然光與偏振光的振動特點 67
圖3.11 偏光顯微鏡示意圖 68
圖3.12 電腦斷層攝影 69
圖3.13 試體X-ray斷層掃描各截面影像 69
圖3.14 HDSTM儀器正面 70
圖3.15 HDSTM儀器側面 70
圖3.16 HDSTM系統架構圖 70
圖3.17 Motic Plus測量工具畫面 75
圖3.18 Motic Plus分析數據自動匯出畫面 75
圖3.19 壓力分佈感測墊示意圖 76
圖3.20 即時顯示壓力之系統畫面 76
圖3.21點壓力計算之系統畫面 76
圖3.22區域壓力計算之系統畫面 76
圖4.1廠拌式高黏度改質瀝青(標稱最大粒徑12.5mm)之嘗試級配 77
圖4.2廠拌式高黏度改質瀝青(標稱最大粒徑12.5mm)之垂流試驗結果 79
圖4.3廠拌式高黏度改質瀝青(標稱最大粒徑12.5mm)之飛散試驗結果 79
圖4.4 PAC耐久特性評估之研究流程 81
圖4.5瀝青膠泥長期老化後與針入度之關係 83
圖4.6老化後瀝青膠泥軟化點溫度圖 83
圖4.7老化後瀝青膠泥溫度掃描之G*值 84
圖4.8老化後瀝青膠泥溫度掃描之δ值 85
圖4.9老化後瀝青膠泥於10 rad/s作用下之溫度掃描 85
圖4.10 PAC老化前後之滯留強度指數 87
圖4.11PAC老化前後之磨耗百分比 90
圖4.12 PAC試體低溫養治環境 90
圖4.13裁切粒料過程 93
圖4.14裁切後之粒料示意圖 93
圖4.15偏光顯微鏡油膜厚度拍攝 93
圖4.16油膜厚度與滯留強度指數關係 95
圖4.17油膜厚度與磨耗百分比關係 95
圖5.1 瀝青膠漿試體X-ray CT掃描試體 97
圖5.2 瀝青膠漿試體CT影像 97
圖5.3 孔隙影像之CT number 98
圖5.4原始孔隙影像 99
圖5.5 Brain模式 99
圖5.6 Chest模式 99
圖5.7自行開發之CT影像平台 99
圖5.8影像分析流程 100
圖5.9 PAC試體CT影像原始畫面 101
圖5.10 PAC試體之對比強化後影像 101
圖5.11孔隙分類程式演算邏輯 102
圖5.12 PAC孔隙辨識量化系統畫面 102
圖5.13 PAC試體水浴環境 103
圖6.1 PAC功能特性評估之研究流程 107
圖6.2 預拌式高黏滯度(19.0mm)孔隙分布圖 109
圖6.3 廠拌式高黏滯度(19.0mm)孔隙分布圖 110
圖6.4 預拌式高黏滯度(12.5mm)孔隙分布圖 110
圖6.5 重型改質瀝青添加礦纖(12.5mm)孔隙分布圖 111
圖6.6 重型改質瀝青添加木纖(12.5mm)孔隙分布圖 111
圖6.7 標稱粒徑19.0mm之孔隙分布圖 112
圖6.8標稱粒徑12.5mm之孔隙分布圖 113
圖6.9試體不同製做法之連通孔隙率比較 113
圖6.10輪跡試驗後結構劣化影像掃描(a) 114
圖6.11輪跡試驗後結構劣化影像掃描(b) 114
圖6.12輪跡試驗後結構劣化影像掃描(c) 114
圖6.13輪跡試驗後結構劣化影像掃描(d) 114
圖6.14有效孔隙率與透水係數之關係 116
圖6.15 孔隙特徵參數與透水係數之關係 116
圖6.16孔隙特徵參數與低溫磨耗率之關係 117
圖7.1 紋理參數PT示意圖 119
圖7.2 紋理參數AT示意圖 119
圖7.3 紋理參數 SAPD示意圖 120
圖7.4 PAC安全特性評估之研究流程 122
圖7.5 非浸水車轍試驗紋理值 124
圖7.6 PAC浸水車轍試驗 125
圖7.7 浸水車轍試驗紋理值 126
圖7.8 浸水車轍試驗反覆滾壓300次油膜剝脫 126
圖7.9 浸水車轍試驗反覆滾壓1200次表面粒料破損 127
圖7.10 乾式輪跡試驗後PAC試體表面乾燥之BPN值 129
圖7.11 乾式輪跡試驗後PAC試體表面潮濕之BPN值 130
圖7.12 浸水車轍試驗潮濕BPN 132
圖7.13 乾燥BPN與SPACD不同車轍狀況下之關係圖 134
圖7.14 經不同車轍次數滾壓之剖面高程圖(以B22為例) 135
圖7.15 PAC紋理與乾燥BPN之關係 135
圖7.16 PAC紋理與潮濕BPN之關係 136
圖7.17 OGFC摩擦力預測式 136
圖7.18 PAC試體受載後之斷層掃描圖 137
圖7.19 荷重壓力分佈 138
圖7.20 PAC荷重應力與BPN之關係 139
圖7.21標稱粒徑19.0mm之BPN與平均壓力分佈圖 140
圖7.22 標稱粒徑12.5mm之BPN與平均壓力分佈圖 140
表目錄
表2.1 空隙分類對PAC之透水及降噪特性之影響 10
表2.2 賓夕法尼亞州鋪面摩擦力資料 11
表2.3 不同面層材料之潮濕路面抗滑值 12
表2.4 鋪面紋理量測結果 13
表2.5 不同速度下各鋪面抗滑結果 13
表2.6 不同面層材料之路面平坦度量測結果 16
表2.7 荷蘭採用PAC鋪面減噪效果調查 17
表2.8 不同面層材料之輪胎/路面噪音量測結果 18
表2.9 骨材不同最大粒徑之減噪效果 19
表2.10 不同厚度之減噪效果 19
表2.11 不同瀝青混凝土在90℃~70℃及70℃~50℃的降溫速率 22
表2.12 英國PAC試驗道路服務年限經驗公式 27
表2.13 鋪面資料輸入 28
表2.14 多孔隙鋪面績效裂化到達養護門檻值年限表 29
表2.15 多孔隙鋪面施工成本 29
表2.16 水份敏感性試驗 35
表2.17 不同鋪面紋理量測方法之比較 50
表3.1預拌式高黏度改質瀝青基本試驗結果 53
表3.2 廠拌式高黏度改質瀝青基本試驗結果 53
表3.3改質瀝青(黏滯度30000Poises)基本試驗結果 54
表3.4改質瀝青(黏滯度8000Poises)基本試驗結果 54
表3.5 粒料基本物性試驗結果 56
表3.6木質纖維性質檢查表 56
表3.7礦纖性質檢查表 56
表3.8由溫度T℃透水係數所得之補正係數μT/μ15 64
表4.1 標稱最大粒徑12.5mm之合成級配總表 78
表4.2標稱最大粒徑19.0mm之合成級配總表 78
表4.3廠拌式高黏度改質瀝青(標稱最大粒徑12.5mm)之垂流試驗結果 78
表4.4廠拌式高黏度改質瀝青(標稱最大粒徑12.5mm)之飛散試驗結果 79
表4.5配合設計設計含油量總表 80
表4.6 NMS 12.5mm配合設計結果總表 80
表4.7 NMS 19.0mm配合設計結果總表 80
表4.8 PAC材料種類 82
表4.9殘留針入度比 82
表4.10煮沸試驗分析 86
表4.11車轍輪跡試驗結果(UA) 88
表4.12車轍輪跡試驗結果(LTA) 88
表4.13浸水輪跡試驗結果(UA) 89
表4.14浸水輪跡試驗結果(LTA) 89
表4.15回彈模數試驗結果(LTA) 91
表4.16 PAC平均油膜厚度量測結果 92
表4.17油膜厚度多變量變異數分析資料 93
表4.18油膜厚度與材料特性之多變量變異數分析 94
表5.1 不同水浴時間下之連通孔隙率 104
表5.2試體水浴時間對連通孔隙計算檢定結果 104
表5.3 系統分析與經驗式之孔隙率檢定結果 105
表6.1 PAC圓柱試體孔隙影像量化結果 108
表6.2 PAC矩形試體孔隙影像量化結果 108
表6.3 PAC輪跡試驗孔隙閉合率 115
表6.4 PAC浸水輪跡試驗孔隙閉合率 115
表7.1 2D紋理參數因子與BPN彙總表-Dense 121
表7.2 2D紋理參數因子與BPN彙總表-SMA 121
表7.3 2D開放級配紋理參數因子與BPN彙總表-PAC 121
表7.4 不同材料特性之PAC試體初始紋理 123
表7.5 不同材料特性之PAC試體初始紋理ANOVA 檢定 124
表7.6 OGFC之2D_SAPD紋理值 128
表7.7 OGFC 試體紋理ANOVA表 128
表7.8 乾燥BPN車轍試驗前後比較表 131
表7.9 潮濕BPN車轍試驗前後比較表 131
表7.10 潮濕BPN車轍試驗前後比較表 132
表7.11 OGFC之BPN抗滑值 133
表7.12 OGFC試體抗滑ANOVA檢定 133
表7.13 SAPD與BPN之判定係數 134
表7.14 荷重次數下之試體表面壓力與抗滑值 138
參考文獻 中西弘光、池善玉譯 (2002),「排水性路面鋪裝功能持續性的研究」,廣西交通科技,第27卷,第4期,第7-12頁。
低騒音舗装研究会 (2001),「低騒音舗装の概說」,財団法人 建設物価調查会。
余政儒 (1994),「瀝青混凝土添加石灰耐久性之研究」,碩士論文,國立中央大學,桃園。
吳佳銘 (2008),「含再生綠建材低噪音鋪面績效評估及噪音預測模式建立之研究」, 博士論文,國立台灣科技大學,台北。
吳宗騂 (2007),「透水性鋪面溫度行為模式之初步探討」,碩士論文,逢甲大學,台中。
吳政松 (2006),「透水鋪面對工程環境之影響效益分析」,碩士論文,國立中央大學,桃園。
吳翔文 (2001),「機場跑道抗滑値預測模式及檢測規範初探」,碩士論文,國立台灣大學,台北。
沈得縣、徐茂濱、劉明仁 (2006),「國道路面行車噪音減輕對策之研究」,交通部國台灣區國道新建工程局,台北。
林宏偉 (2003),「瀝青混凝土鋪面加鋪作業溫降量測之開放交通時機研究」,碩士論文,國立中央大學,桃園。
林志棟 (2006),「高速公路排水性路面試鋪成效」,交通部臺灣區國道高速公路局,台北。
姜勇杰 (2006a),「橡膠瀝青路面的環保效益」,金邦科技發展有限公司,香港。
姜勇杰 (2006b),「橡膠瀝青鋪面技術綜論」,金邦科技發展有限公司,香港。
徐震宇 (2008),「不同透水性鋪面材料對鋪面溫度影響之探討」,碩士論文,國立中央大學,桃園。
翁逸偉 (2011),「鋼床鈑鋪面破壞分析及較適鋪面材料之探討」,博士論文,國立中央大學,桃園。
莊克士 (1998),「醫學影像物理學」,合記圖書出版社,台北。
陳世晃 (2003),「台灣鋪面(Taipave)配比設計法之初擬」,博士論文,國立中央大學,桃園。
陳永林 (2003),「HDM-4於台灣地區柔性路面養護工程應用之研究」,碩士論文, 國立中央大學,桃園。
陳信豪 (2008),「二維CT醫學影像之骨頭輪廓自動擷取」,碩士論文,國立中央大學,桃園。
陳勁誠 (2009),「膝關節軟骨MRI影像之邊界辨識與三維模型重建探討」,碩士論文,國立中央大學,桃園。
陳建旭 (2011),「多孔隙及石膠泥瀝青混凝土鋪面養護手冊委託技術服務期中報告」,交通部臺灣區國道高速公路局,台中。
黃建中 (2010),「多孔隙瀝青混凝土之特性分析」,博士論文,國立成功大學,台南。
黃博仁 (2001),「排水性瀝青混合料鋪面試驗路段之成效評估」,碩士論文,國立中央大學,桃園。
黃隆昇 (2003),「瀝青混凝土巨觀車轍及微觀軌跡之行為機制分析」,博士論文,國立成功大學,台南。
葉榮晟 (2010),「多孔隙瀝青混凝土鋪面全生命週期管理系統建構之研究」博士論文,國立中央大學,桃園。
鄭仁崇 (2005),「國道高速公路排水性鋪面材料設計影響因素及成效之研究」,碩士論文,國立中央大學,桃園。
鍾權淇 (2000),「應用數位影像分析探討瀝青混凝土之粒料結構」,碩士論文,國立中央大學,桃園。
Adhikari, S., & You, Z. (2008). Distinct element modeling of the asphalt mixtures: from two-dimensional to three-dimensional models.
Al-Omari, A., Tashman, L., E., M., Cooley, A., & T., H. (2002). Proposed methodology for predicting HMA permeability. Journal of the Association of Asphalt Paving Technologists, 71(2), 30-58.
Alderson, A. (1996). The design of open graded asphalt. Australian Asphalt Pavement Association, CR C5151.
Alvarez, A. E., Epps-Martin, A., Estakhri, C., & Izzo, R. (2010). Evaluation of durability tests for permeable friction course mixtures. International Journal of Pavement Engineering, 11(1), 49-60.
Arambula, E., Masad, E., & Martin, A. E. (2007). Influence of air void distribution on the moisture susceptibility of asphalt mixes. Journal of Materials in Civil Engineering, 19, 655.
Asaeda, T., & Ca, V. T. (2000). Characteristics of permeable pavement during hot summer weather and impact on the thermal environment. Building and Environment, 35(4), 363-375.
Association, E. S. (2006). Legal Status of Slags. Position Paper, Duisburg, Germany, 1-2.
Barrett, M., Kearfott, P., Malina Jr, J., Landphair, H., Li, M. H., Olivera, F., & Rammohan, P. (2006). Pollutant Removal on Vegetated Highway Shoulders.
Bendtsen, H., & Larsen, L. E. (2002). Two-layer porous pavements and noise reductions in Denmark.
Bendtsen, H., Larsen, L. E., & Greibe, P. (1999). Development of noise reducing pavements for urban roads. VD Notat, 66.
Bennert, T., D., H., Maher, A., & Vitillo, N. (2005). Influence of pavement surface type on tire/pavement generated noise. Journal of Testing and Evaluation, 33(2), 94-100.
Bennert, T., Fee, F., Sheehy, E., Jumikis, A., & Sauber, R. (2005) Comparison of thin-lift hot-mix asphalt surface course mixes in New Jersey. TRB 2005 Annual Meeting (CD-ROM). Washington, D.C.
Berbee, R., Rijs, G., de Brouwer, R., & van Velzen, L. (1999). Characterization and treatment of runoff from highways in the Netherlands paved with impervious and pervious asphalt. Water Environment Research, 183-190.
Berengier, M., Hamet, J., & Bar, P. (1990). Acoustical properties of porous asphalts: theoretical and environmental aspects. Transportation Research Record(1265).
Bolzan, P., Nicholls, J., & Nuber, G. (2001). Searching for superior performing porous asphalt wearing courses. Paper presented at the Transportation Research Board 88rd Annual Meeting, Washington, D.C.
Braz, D., da Motta, L. M. G., & Lopes, R. T. (1999). Computed tomography in the fatigue test analysis of an asphaltic mixture. Applied radiation and isotopes, 50(4), 661-671.
Brown, E., & Technology, N. C. f. A. (2002). NCAT Test Track Design, Construction and Performance: National Center for Asphalt Technology, Auburn University.
Canny, J. (1986). A computational approach to edge detection. Pattern Analysis and Machine Intelligence, IEEE Transactions on(6), 679-698.
Chadbourn, B. A., Skok Jr, E. L., Newcomb, D. E., Crow, B. L., & Spindler, S. (1999). The effect of voids in mineral aggregate (VMA) on hot-mix asphalt pavements.
Chandan, C., Sivakumar, K., Masad, E., & Fletcher, T. (2004). Application of imaging techniques to geometry analysis of aggregate particles. Journal of computing in civil engineering, 18, 75.
Chen, C. T., Hung, C. T., Yeh, M. C., & Lin, J. D. (2009). A study on the cost analysis of porous pavement on freeway. Paper presented at the ASCE Conf. Proc., Hunan.
Chen, S.-H., Lin, J.-D., Huang, D., & Yeh, M.-C. (2011). Performance of replacing traditional natural aggregates in dense grade asphalt concrete with basic oxygen furnace slag. Journal of The Chinese Institute of Engineers.
Cheng, H., Shi, X., & Glazier, C. (2003). Real-time image thresholding based on sample space reduction and interpolation approach. Journal of computing in civil engineering, 17, 264.
Choo, Y., & Liu, Y. (2003). Effect of aggregate spacing on skid resistance of asphalt pavement. Journal of transportation engineering, 129, 420.
Cooley Jr, L. A., Brumfield, J. W., Mallick, R. B., Mogawer, W. S., Partl, M. N., Poulikakos, L. D., & Hicks, G. (2009). Construction and maintenance practices for permeable friction courses. Washington, D.C.
Cooper Jr, S. B., Abadie, C., & Mohammad, L. N. (2004). Evaluation of Open-Graded Friction Course Mixture: Louisiana Transportation Research Center. Louisiana, October.
Decoene, Y. (1990). Contribution of cellulose fibers to the performance of porous asphalts. Transportation Research Record(1265).
Do, M. T., Tang, Z., Kane, M., & de Larrard, F. (2009). Evolution of road-surface skid-resistance and texture due to polishing. Wear, 266(5-6), 574-577.
Drapper, D., Tomlinson, R., & Williams, P. (2000). Pollutant concentrations in road runoff: Southeast Queensland case study. Journal of Environmental Engineering, 126, 313.
Ellis, J., Revitt, D., Harrop, D., & Beckwith, P. (1987). The contribution of highway surfaces to urban stormwater sediments and metal loadings. Science of the Total Environment, 59, 339-349.
Elvik, R., & Greibe, P. (2005). Road safety effects of porous asphalt: a systematic review of evaluation studies. Accident Analysis & Prevention, 37(3), 515-522.
Fletcher, T., Chandan, C., Masad, E., & Sivakumar, K. (2003). Aggregate imaging system for characterizing the shape of fine and coarse aggregates. Transportation Research Record: Journal of the Transportation Research Board, 1832(-1), 67-77.
Flintsch, G. W. (2004). Assessment of the performance of several roadway mixes under rain, snow, and winter maintenance activities.
Flintsch, G. W., de Leon, E., McGhee, K. K., & AI-Qadi, I. L. (2003). Pavement surface macrotexture measurement and applications. Transportation Research Record: Journal of the Transportation Research Board, 1860(1), 168-177.
Forster, S. W. (1989). Pavement microtexture and its relation to skid resistance. Transportation Research Record(1215).
Frantzis, P. (2003). Crumb Rubber–Bitumen Interactions: Cold-Stage Optical Microscopy. Journal of Materials in Civil Engineering, 15, 419.
Frantzis, P. (2004). Crumb rubber-bitumen interactions: diffusion of bitumen into rubber. Journal of Materials in Civil Engineering, 16, 387.
Fwa, T., Tan, S., & Guwe, Y. (1999). Laboratory evaluation of clogging potential of porous asphalt mixtures. Transportation Research Record: Journal of the Transportation Research Board, 1681(-1), 43-49.
Goode, J. F., & Lufsey, L. A. (1965). Voids, permeability, film thickness vs. asphalt hardening.
Graf, B., & Simond, E. (2005). Erfahrungen mit Drainasphaltbelagen im Kanton Waadt. Strasse und Verkehr, 91(4), 12-15.
Greibe, A. P. (2002). Porous asphalt and safety. Paper presented at the Proceedings of the Ninth International Conference on Asphalt Pavements, Copenhagen, Denmark.
Hagiwara, T., Kizaka, K., & Fujita, S. (2004). Development of visibility assessment methods with digital images under foggy conditions. Transportation Research Record: Journal of the Transportation Research Board, 1862(1), 95-108.
Hagos, E. T., & Molenaar, I. A. A. A. (2008). The effect of aging on binder properties of porous asphalt concrete. Delft: Delft University of Technology.
Hall, K. D., & Ng, H. G. (2001). Development of void pathway test for investigating void interconnectivity in compacted hot-mix asphalt concrete. Transportation Research Record: Journal of the Transportation Research Board, 1767(1), 40-47.
Hanson, D. I., James, R. S., & Nesmith, C. (2004). Tire/pavement noise study Auburn.
Hawks, N., Teng, T., Bellinger, W., Rogers, R., Baker, C., Brosseau, K., & Humphrey, L. (1993). Distress identification manual for the long term pavement performance project. Strategic Highway Research Program, SHRP-P-338, 15, 375-379.
Hibbs, B. O., Larson, R. M., & Administration, U. S. F. H. (1996). Tire pavement noise and safety performance: Federal Highway Administration.
Huber, G. (2000). Performance survey on open-graded friction course mixes (Vol. 284): Transportation Research Board.
Isenring, T., Koster, H., & Scazziga, I. (1990). Experiences with porous asphalt in Switzerland. Transportation Research Record(1265), 41-53.
Iwata, H., Watanabe, T., & Saito, T. (2002). Study on the Performance of Porous Asphalt Pavement on Winter Road Surface Conditions.
Jain, A. K. (1989). Fundamentals of digital image processing: Prentice-Hall, Inc.
Jandhyala, V., & Dasgupta, N. (2002). Characterization of air void distribution in asphalt mixes using X-ray computed tomography. Journal of Materials in Civil Engineering, 14, 122.
Joubert, R. M. (1992). Durable open-graded mixes enhance safety and reduce noise. Asphalt Magazine, 6(1), 1-2.
Kandhal, P. S. (2002). Design, construction, and maintenance of open-graded asphalt friction courses: National Asphalt Pavement Association Information series 115.
Kandhal, P. S., Foo, K. Y., & Mallick, R. B. (1998). A critical review of VMA requirements in Superpave. National Center for Asphalt Technology Report(98-1).
Kandhal, P. S., & Mallick, R. B. (1998). Open graded asphalt friction course: State of the practice. National Center for Asphalt Technology Report(98-7).
Kandhal, P. S., & Mallick, R. B. (1999). Design of new-generation open-graded friction courses. NCAT Rep(99-3).
Kandhal, P. S., & Parker, F. (1998). Aggregate tests related to asphalt concrete performance in pavements: Transportation Research Board.
Kassem, E., Walubita, L., Scullion, T., Masad, E., & Wimsatt, A. (2008). Evaluation of Full-Depth Asphalt Pavement Construction Using X-ray Computed Tomography and Ground Penetrating Radar. Journal of Performance of Constructed Facilities, 22, 408.
Kim, Y. T. (1997). Contrast enhancement using brightness preserving bi-histogram equalization. Consumer Electronics, IEEE Transactions on, 43(1), 1-8.
Kowalski, K., McDaniel, R. S., Shah, A., Olek, J., & Board, T. R. (2009). Long term monitoring of the noise and frictional properties of PFC, SMA and DGA pavements. Paper presented at the Transportation Research Board 88th Annual Meeting, Washington, DC.
Kraemer, C. (1990). Porous asphalt surfacing in Spain.
Kubo, K., Kido, H., & Ito, M. (2006). Study on pavement technologies to mitigate the heat island effect and their effectiveness.
Kumar, A., & Goetz, W. (1977). Asphalt hardening as affected by film thickness, voids and permeability in asphaltic mixtures.
Lee, S. J., Akisetty, C. K., & Amirkhanian, S. N. (2008). The effect of crumb rubber modifier (CRM) on the performance properties of rubberized binders in HMA pavements. Construction and Building Materials, 22(7), 1368-1376.
Lefebvre, G. (1993). Porous Asphalt: Permanent International Association of Road Congresses.
Leite, L., & Soares, B. (1999). Interaction of asphalt with ground tire rubber. Petroleum science and technology, 17(9-10), 1071-1088.
Lin, J. D., Yeh, M. C., Hung, C. T., & Chiou, C. R. (2011). Analysis of the relationship between porous pavement thickness and spray quantification. Advanced Materials Research, 243-249, 4139-4146.
Mamlouk, M., Witczak, M., Kaloush, K., & Hasan, N. (2005). Determination of Thermal Properties of Asphalt Mixtures. Journal of Testing and Evaluation, 33(2), 1-9.
Masad, E. (2004). X-ray computed tomography of aggregates and asphalt mixes. Materials evaluation, 62(7), 775-783.
Masad, E., Muhunthan, B., Shashidhar, N., & Harman, T. (1999a). Internal structure characterization of asphalt concrete using image analysis. Journal of computing in civil engineering, 13, 88.
Masad, E., Muhunthan, B., Shashidhar, N., & Harman, T. (1999b). Quantifying laboratory compaction effects on the internal structure of asphalt concrete. Transportation Research Record: Journal of the Transportation Research Board, 1681(1), 179-185.
Masad, E., Somadevan, N., Bahia, H. U., & Kose, S. (2001). Modeling and experimental measurements of strain distribution in asphalt mixes. Journal of transportation engineering, 127, 477.
McDaniel, R., & Thornton, W. (2005). Field evaluation of a porous friction course for noise control.
McDaniel, R., Thornton, W. D., Dominguez, J. G., Center, N. C. S., Institute for Safe, Q., Highways, D., & Program, U. T. C. (2004). Field evaluation of porous asphalt pavement: Purdue University, Schools of Civil and Mechanical Engineering.
Meiarashi, S. (1999). Research on low noise pavement in Japan. Journal of the Acoustical Society of Japan, 20(1), 19-27.
Mildenberger, P., Eichelberg, M., & Martin, E. (2002). Introduction to the DICOM standard. European radiology, 12(4), 920.
Mo, L., Huurman, M., Wu, S., & Molenaar, A. (2008). 2D and 3D meso-scale finite element models for ravelling analysis of porous asphalt concrete. Finite Elements in Analysis and Design, 44(4), 186-196.
Mo, L., Huurman, M., Wu, S., & Molenaar, A. (2009). Ravelling investigation of porous asphalt concrete based on fatigue characteristics of bitumen-stone adhesion and mortar. Materials & Design, 30(1), 170-179.
Molenaar, J., & Molenaar, A. (2000). An investigation into the contribution of the bituminous binder to the resistance to raveling of porous asphalt. Paper presented at the 2nd Eurasphalt & Eurobitume Congress, Barcelona, Spain.
Morrison, G., & Hesp, S. A. M. (1995). A new look at rubber-modified asphalt binders. Journal of materials science, 30(10), 2584-2590.
Murali, K. J., & Rengaraju, V. R. (1999). Air voids reduction phenomena of asphalt concrete -a continuum approach. International Journal of Fracture, 97(1), 337-354.
Nelson, P. (1995). Designing porous road surfaces to reduce traffic noise. TRL ANNUAL REVIEW 1994.
Ni, H. (2003). Application of asphalt rubber technology to recreational trails.
Nicholls, J. (1997). Review of UK porous asphalt trials (Vol. 264): Thomas Telford.
Norhidayah A. Hassan, G. D. A., Rawid Khan, Andrew C. Collop. (2012). Nondestructive characterisation of the effect of asphalt mixture compaction on aggregate orientation and segregation using X-ray computed tomography. International Journal of Pavement Research and Technology, 5(2), 84-92.
Ohkawa, H., Hokari, K., & Maruyama, T. (1994). Koyama, k.,” A Fundamental Study on Void Structure of The Drainage Asphalt Pavement,”. Journal of Structural Mechanics and Earthquake Engineering, JSCE, 22(484), 69-76.
Oliver, J. W. H. (2009). Factors affecting the correlation of skid-testing machines and a proposed correlation framework. Road & Transport Research: A Journal of Australian and New Zealand Research and Practice, 18(2), 39.
Powell, R. L. (2009). Construction and performance of Georgia’s permeable surface mixes on 2006 NCAT pavement test track. Paper presented at the Transportation Research Board 88rd Annual Meeting, Washington, D.C.
Pucher, E., Litzka, J., Haberl, J., & Girard, J. (2004). Report on recycling of porous asphalt in comparison with dense asphalt: SILVIA Project Report SILVIA-TUW-036-01-WP3-260204.
Roberts, F. L., Kandhal, P. S., Brown, E. R., Lee, D. Y., & Kennedy, T. W. (1996). Hot mix asphalt materials, mixture design and construction.
Rogers, M., & Gargett, T. (1991). A skidding resistance standard for the national road network. HIGHWAYS & TRANSPORTATION, 38(4).
Rogge, D. F., Group, O. D. o. T. R., & Administration, U. S. F. H. (2002). Development of maintenance practices for Oregon f-mix: final report: Oregon Dept. of Transportation, Research Group.
Ruiz, A., Alberola, R., Perez, F., & Sanchez, B. (1990). Porous asphalt mixtures in Spain. Transportation Research Record(1265).
Sandberg, U. (1979). A road surface for reduction of tie noise emission. Inter-Noise 79, 11-13.
Santha, L. (1997). A Comparison of Modified Open-Graded Friction Courses to Standard Open-Graded Friction Course. Forest Park, Georgia.
Shen, D. H., Wu, C. M., & Du, J. C. (2009). Laboratory investigation of basic oxygen furnace slag for substitution of aggregate in porous asphalt mixture. Construction and Building Materials, 23(1), 453-461.
Shen, J., & Amirkhanian, S. (2005). The influence of crumb rubber modifier (CRM) microstructures on the high temperature properties of CRM binders. The International Journal of Pavement Engineering, 6(4), 265-271.
Shen, J., Amirkhanian, S., Xiao, F., & Tang, B. (2009). Influence of surface area and size of crumb rubber on high temperature properties of crumb rubber modified binders. Construction and Building Materials, 23(1), 304-310.
Sonka, M., Hlavac, V., & Boyle, R. (1999). Image processing, analysis, and machine vision (Vol. 2): PWS publishing Pacific Grove, CA.
Stark, J. A. (2000). Adaptive image contrast enhancement using generalizations of histogram equalization. Image Processing, IEEE Transactions on, 9(5), 889-896.
STP204-19. (2001). Asphalt film thickness determination Standard test procedures manual. Saskatchewan Highways and Transportation, Canada
Tashman, L., Wang, L., & Thyagarajan, S. (2007). Microstructure characterization for modeling HMA behaviour using imaging technology. Road Materials and Pavement Design, 8(2).
Ting, M., Koomey, J., & Pomerantz, M. (2001). Preliminary evaluation of the lifecycle costs and market barriers of reflective pavements.
Titus-Glover, L., & Tayabji, S. D. (1999). Assessment of LTPP friction data: Federal Highway Administration.
Van Der Zwan, J. T., Goeman, T., Gruis, H., Swart, J., & Oldenburger, R. (1990). Porous asphalt wearing courses in the Netherlands: State of the art review.
Van Heystraeten, G., & Moraux, C. (1990). Ten years’ experience of porous asphalt un Belgium. Transportation Research Record(1265), 34-40.
Wang, L., Frost, J., & Shashidhar, N. (2001). Microstructure study of WesTrack mixes from X-ray tomography images. Transportation Research Record: Journal of the Transportation Research Board, 1767(1), 85-94.
Wang, L., Paul, H. S., Harman, T., & D’’Angelo, J. (2004). Characterization of aggregates and asphalt concrete using X-ray computerized tonography-a state of the art report (with disscussion). Journal of the Association of Asphalt Paving Technologists, 73.
Watson, D., Johnson, A., & Jared, D. (1998). Georgia Department of Transportation’’s progress in open-graded friction course development. Transportation Research Record: Journal of the Transportation Research Board, 1616(1), 30-33.
Watson, D. E., Moore, K. A., Williams, K., & Cooley, L. A. (2003). Refinement of new-generation open-graded friction course mix design. Transportation Research Record: Journal of the Transportation Research Board, 1832(1), 78-85.
Wayson, R. L. (1998). Relationship between pavement surface texture and highway traffic noise (Vol. 268): Transportation Research Board.
Y., Y., & S., S. (2010). Durability on noise effect and condition of double -layer porous asphalt pavement. Civil Engineering Journal, 50(9), 10-13.
Yan, F., Zhang, H., & Kube, C. R. (2005). A multistage adaptive thresholding method. Pattern Recognition Letters, 26(8), 1183-1191.
Yavuzturk, C., K Ksaibati, P., & AD Chiasson, P. (2005). Assessment of temperature fluctuations in asphalt pavements due to thermal environmental conditions using a two-dimensional, transient finite-difference approach. Journal of Materials in Civil Engineering, 17, 465.
You, Z., Adhikari, S., & Emin Kutay, M. (2009). Dynamic modulus simulation of the asphalt concrete using the X-ray computed tomography images. Materials and Structures, 42(5), 617-630.
Yue, Z., Bekking, W., & Morin, I. (1995). Application of digital image processing to quantitative study of. Transportation Research Record, 1492, 53-60.
Yue, Z., Chen, S., & Tham, L. (2003). Finite element modeling of geomaterials using digital image processing. Computers and Geotechnics, 30(5), 375-397.
Zelelew, H., & Papagiannakis, A. (2011a). A volumetrics thresholding algorithm for processing asphalt concrete X-ray CT images. International Journal of Pavement Engineering, 12(6), 543-551.
Zelelew, H., & Papagiannakis, A. (2011b). Wavelet-based characterisation of aggregate segregation in asphalt concrete X-ray computed tomography images. International Journal of Pavement Engineering, 12(6), 553-559.
指導教授 林志棟(Jyh-Dongl Lin) 審核日期 2012-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明