參考文獻 |
[1] Han, J., Kamber, M., Data Mining Concepts and Techniques., 2nd Ed., Morgan Kaufmann Publishers Inc., San Francisco, CA, 2000.
[2] Hastie, T., Tibshirani, R., & Friendman, J., The Elements of Statistical Learning: Data Mining, Inference and Prediction., Springer-Verlag, Berlin, Heidelberg, and New York, 2001.
[3] Witten, I. H., & Frank, E., Data Mining: Practical Machine Learning Tools and Techniques., 2nd Ed., Morgan Kaufmann Publishers Inc., San Francisco, CA, 2005.
[4] Webb, A. R., Statistical Pattern Recognition., 2nd Ed., John Wiley & Sons, Chichester, England, 2002
[5] Chawla, N. V., Japcowicz, N., & Kolcz, A., “Editorial: Special Issue on learning from imbalanced datasets”, ACM SIGKDD Explorations Newsletter, Vol. 6, no. 1, pp. 1-6, 2004.
[6] Batista, G. E. A. P. A., Prati, R. C., & Monard, M. C., “A Study of the Behavior of Several Methods for Balancing Machine Learning Training Data”, ACM SIGKDD Explorations Newsletter, Vol. 6, no. 1, pp. 20-29, 2004.
[7] Visa, S., & Ralescu, A., “Issues in Mining Imbalanced Data Sets - A Review Paper”, In: Proceeding of the Sixteen Midwest Artificial Intelligence and Cognitive Science Conference, Dayton, Ohio, USA, pp. 67-73, 2005.
[8] Kotsiantis, S., Kanellopoulos, D., & Pintelas, P., “Handling imbalanced datasets: A review”, GESTS International Transactions on Computer Science and Engineering, Vol. 30, no. 1, pp. 25-36, 2006.
[9] Merz, C.J., & Murphy, P.M., UCI Repository of machine learning databases. University of California, Irvine School of Law, http://www.ics.uci.edu/~mlearn/MLRepository.html.
[10] Vapnik, V. N., The Nature of Statistical Learning Theory., Springer-Verlag, Berlin Heidelberg, New York, 1995.
[11] Vapnik, V. N., “An Overview of Statistical Learning Theory”, IEEE Transaction on Neural Networks, Vol. 10, pp. 988-999, 1999.
[12] Duda, R. O., Hart, P. E., & Stork, D. G., Pattern classification., 2nd Ed., John Wiley & Sons, Inc., New York, 2001.
[13] Hsu, C. C., Wang, K. S., Chung, H. Y., & Chang, S. H., “Equation of SVM-rebalancing: the point-normal form of a plane for class imbalance problem”, Neural Computing and Applications, DOI https://doi.org/10.1007/s00521-018-3419-z, 2018. (Accepted)
[14] Provost, F., & Fawcett, T., “Robust Classification for Imprecise Environments”, Machine Learning, Vol. 42, no. 3, pp. 203–231, 2001.
[15] Wu, G., & Chang, E. Y., “Class-boundary alignment for imbalanced dataset learning”, In: Proceedings of the ICML’03 Workshop on Learning from Imbalanced Datasets, pp. 49-56, 2003.
[16] Veropoulos, K., Campbell, C., & Cristianini, N., “Controlling the sensitivity of support vector machines”, In: Proceedings of the International Joint Conference on AI, pp. 55-60, 1999.
[17] Chawla, N. V., Data mining and knowledge discovery handbook., Springer, Boston, MA, 2005.
[18] Akbani, R., Kwek, S., & Japkowicz, N., “Applying Support Vector Machines to imbalanced Datasets”, In: Proceedings 15th ECML, pp. 39-50, 2004.
[19] Yan, R., Liu,Y., & Jin, R., “On Predicting Rare Classes with SVM Ensembles in Scene Classification”, In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP′03), Hong Kong, pp. 21-24, Apr. 2003.
[20] Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P., “SMOTE: Synthetic Minority Over-sampling Technique”, Journal of Artificial Intelligence Research, Vol. 16, pp. 321-357, 2002.
[21] Tang, Y., Zhang, Y.-Q., Chawla, N. V., & Krasser, S., “SVMs Modeling for Highly Imbalanced Classification”, IEEE Transactions on Systems, Man, and Cybernetics, Part B, Vol. 39, no. 1, pp. 281-288, 2009.
[22] Domingos, P., “MetaCost: A general method for making classifiers cost-sensitive”, In: proceedings of the Fifth International Conference on Knowledge Discovery and Data Mining, San Diego, CA: ACM Press, pp. 155-164, 1999.
[23] Tomek, I., “Two Modifications of CNN”, IEEE Transactions on Systems Man and Communications, SMC-6, pp. 769-772, 1976.
[24] Ho, T. K., "Random Decision Forest", In: proceedings of the 3rd Int′l Conf on Document Analysis and Recognition, Montreal, Canada, pp. 278-282, August, 1995.
[25] Wu, G., & Chang, E. Y., “KBA: Kernel Boundary Alignment Considering Imbalanced Data Distribution”, IEEE Transaction on Knowledge and Data Engineering, Vol. 17, no. 6, pp. 786-795, 2005.
[26] Chandola, V., Banerjee, A., & Kumar, V., “Anomaly detection: A survey”, ACM Computing Surveys, Vol. 41, no. 3, pp.1-58, 2009.
[27] Zheng, Z., Wu, X., & Srihari, R., “Feature selection for text categorization on imbalanced Data”, ACM SIGKDD Explorations Newsletter, Vol. 6, no. 1, pp. 80-89, 2004.
[28] 鍾鴻源,何誌祥,「基於貝氏資訊之萃取應用於支持向量機之類不平衡分類問題」,國立中央大學,碩士論文,民國98年。
[29] Hsu, C. C., Wang, K. S., & Chang, S. H., “Bayesian decision theory for support vector machines: Imbalance measurement and feature optimization”, Expert Systems With Applications, Vol. 38, no. 5, pp. 4698-4704, May 2011.
[30] Chung, H. Y., Ho, C. H., & Hsu, C. C., “Support vector machines using Bayesian-based approach in the issue of unbalanced classifications”, Expert Systems With Applications, Vol. 38, no. 9, pp. 11447-11452, September 2011.
[31] Kubat, M., & Matwin, S., “Addressing the Curse of Imbalanced Training Sets: One-sided Selection”, In: Proceedings of the 14th International Conference on Machine Learning, Nashville, TN, pp.179-186, 1997.
[32] Van Rijsbergen, C. J., Information Retrieval., 2nd Ed., Butterworths, London, U.K, 1979.
[33] Buckland, M., & Gey, F., “The relationship between Recall and Precision”, Journal of American Society for Information Science, Vol. 45, no. 1, pp. 12-19, 1994.
[34] Bradley, A. P., “The use of the area under the ROC curve in the evaluation of machine learning algorithms”, Pattern Recognition, Vol. 30, no. 7, pp. 1145-1159, Jul. 1997.
[35] Cieslak, D. A., & Chawla, N. V., “Learning Decision Trees for Unbalanced Data”, European Conference on Principles and Practice of Knowledge Discovery in Databases, Antwerp, Belgium, pp. 241-256, 2008.
[36] Suykens, J. A. K., Van Gestel, T., De Brabanter, J., De Moor, B., & Vandewalle, J., Least squares support vector machines., World Scientific Publishing Co. Pte. Ltd., Singapore, 2002.
[37] Anderson, D. R., Sweeney, D. J., & Williams, T. A., Statistics for Business and Economics., 8nd Ed., Southwestern, Cincinnati, 2002.
[38] Vapnik, V. N., The Nature of Statistical Learning Theory., Springer-Verlag, Berlin Heidelberg, New York, 1995.
[39] Vapnik, V. N., “An Overview of Statistical Learning Theory”, IEEE Transaction on Neural Networks, Vol. 10, pp. 988–999, 1999.
[40] 蘇木春、張孝德,機器學習:類神經網路、模糊系統以及基因演算法則,四版,全華出版社,台北市,2016年。
[41] 葉怡成,類神經網路模式應用與實作,九版,儒林出版社,台北市,2009年。
[42] 邊肇祺,張學工等編著,模式識別,二版,清華大學出版社,北京市,2000年。
[43] 周志華,王玨,機器學習及其應用,清華大學出版社,北京市,2009年。
[44] Rokach, L., Pattern classification using ensemble methods., World Scientific Publishing Co. Pte. Ltd., Singapore, 2010.
[45] Joshi, M. V., “On evaluating performance of classifiers for rare classes”, the Second IEEE International Conference on Data Mining (ICDM′02), Washington, D. C., USA, pp. 641-644, 2002.
[46] Breiman, L., “Bias, Variance and Arcing Classifiers”, Technical Report 460, Statistics Department, University of California, Berkeley, 1996.
[47] 徐天祿,陳俊言,盧欣農,許智誠,許哲彰,“驗鈔機的感測方法”,中華民國發明專利第I626625號,公告日2018年。
[48] 菲謝蒂(Mark Fischetti)著,”驗鈔機如何認出假鈔?”,鍾樹人譯,科學人雜誌,遠流出版公司,第20期,10月號,2003年。
[49] 朱昭蓉,錢迺文:2018年國際鈔券研討會-公務出國報告資訊網。2018年8月23日,取自https://report.nat.gov.tw/ReportFront/PageSystem/reportFileDownload/C10701146/001。
[50] Weston, J., & Watkins, C., “Support Vector Machines for Multi-Class Pattern Recognition”, In: Proceedings of the Seventh European Symposium On Artificial Neural Networks, Bruges, Belgium, pp. 219-224, 1999.
[51] Krishnaiah, P. R., & Kanal, L. N., Classification, Pattern Recognition, and Reduction of Dimensionality., North-Holland Pub. Co., New York, 1982.
[52] Platt, J., Cristianini, N., & Shawe-Taylor, J., “Large margin DAGs for multiclass classification”, In: Advances in Neural Information Processing Systems, MIT Press, Cambridge, Massachussets, pp. 547-553, 2000.
[53] Hsu, C. C., Wang, K. S., Chung, H. Y., & Chang, S. H., “A study of visual behavior of multidimensional scaling for kernel perceptron algorithm”, Neural Computing and Applications, Vol. 26, no. 3, pp. 679-691, 2015.
|