博碩士論文 953403047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:3.12.148.180
姓名 鄭志堅(ChIh-Chien Cheng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 靜水壓力增強胎盤幹細胞分化為成骨細胞之鈣沉積
(Hydrostatic Pressure Facilitates Calcium Deposition in Osteoblastic Differentiation of Placenta-Derived Multipotent Cells (PDMCs))
相關論文
★ 溫度調變對二元合金固液介面形態穩定的影響★ 濃度調變對二元合金固液介面形態穩定的影響
★ 圓錐平板型生物反應器週期性流場研究★ 圓錐平板型生物反應器二次週期流場研究
★ 圓錐平板型生物反應器脈動式流場研究★ 濃度調變對單向固化形態穩定的影響
★ 圓錐平板型生物反應器脈動式二次流場研究★ 模擬注流式生物反應器之流場及細胞生長
★ 週期式圓錐平板裝置之設計與量測★ 模擬注流式生物反應器之細胞培養研究
★ 軟骨細胞在組織工程支架之培養研究★ 細胞在組織工程支架之生長與遷移
★ 冷電漿沉積類鑽碳膜之製程模擬分析★ 格狀自動機探討組織工程細胞體外培養研究
★ 細胞在注流式生物反應器之生長研究★ 週期式圓錐平板裝置之流場分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 人體的骨骼形成起始於成骨細胞及骨髓間葉幹細胞(BMMSCs),其會受到培養表面的影響。雖然骨組織在受到創傷後具有再生的能力,但修復的能力卻不一致,且可能產生不良的功能與結果。目前,有一些不同的方法來促進骨頭修復,如外固定或在骨折處加入無機鹽結晶來增進癒合。然而,若損傷區域太大或是骨質疏鬆患者,其破骨細胞的能力大於成骨細胞的能力,則修復能力將受到不同程度的限制。因此,在某些臨床的狀況裡,如骨質疏鬆,增加成骨細胞和前趨細胞的生醫材料工程或許是必要的改進,而在全世界人口老化趨勢下,骨質疏鬆已經是一個龐大的臨床問題。
組織工程是結合生命科學以及工程原理的一個新興學門。有越來越多的學者開始著手進行這方面的研究,其中探討機械物理因素對於細胞分化生長的研究近來也引起廣泛的注意。
近年來許多新的研究發現幹細胞具有高度分化的可塑性,而分化的主要決定條件之一在於幹細胞所處的微環境。目前的研究主要針對生化因子 (例如生長因子、細胞激素、藥物等等)對幹細胞分化的影響,但現在逐漸發現,組織工程材料或是物理因素對細胞也可能具有很重要的影響。
本研究從人類胎盤純化出多功能的細胞(PDMCs),此細胞有能力分化成所有三個胚層的細胞表現型,其中包含成骨細胞。PDMCs的優勢是可方便容易取得大量的細胞,且不需藉由侵入性的方式就可以獲得細胞來源,與骨髓間質幹細胞有所不同。而且PDMCs 擁有免疫抑制的特性,在同種異體治療的應用上應該是可被高度考慮的。
所以,本文的特定目標為探討靜水壓力影響PDMCs成為並增進具有分化成為成骨性質的能力。我們覺得這些細胞可以是成骨細胞的前驅細胞之好的來源,本文的研究數據可能會有針對骨質疏鬆治療的關連性,以及在未來提供實際的臨床價值。
摘要(英) Human bone derives from its cellular component, the osteoblast (OB) and its progenitor the bone marrow mesenchymal stem cell (BMMSC), could be affected by the surface and environment on which it was cultured. Although bone tissue is capable of regenerating after damage or injury, the quality of healing could vary and might result in poor function and outcome. Recently, a number of different methods to improve bone healing have been used, including inner/outer fixation and addition of inorganic crystals at the fracture site. However, if the injured surface/area is wide, or in the case of osteoporosis (OP) where bone resorption by osteoclasts (OCs) exceeds bone formation by OBs, the healing might still be compromised even with such augmentation to intrinsic capacity. Thus, the addition of OBs and progenitors to engineered biomaterials may be necessary to improve outcome in certain clinical conditions, including postmenopausal OP, which with the aging of the population is a clinical problem of epidemic proportions.
In the past few years, the field of adult stem cell research has been revolutionized with the discovery of plasticity. Key to determining the differentiation lineage is the microenvironment in which the stem cell resides in. While the majority of studies have focused on the effects of biochemical factors (i.e., growth factors, cytokines, drugs etc) on stem cell differentiation, it is now increasingly clear that tissue-engineered materials and physical factors might also exert important effects on cells.
In this study, we first isolated a population of multipotent cells from the human term placenta capable of differentiation into phenotypes of all three germ layers, including an osteoblastic phenotype. These placenta-derived multipotent cells (PDMCs) are abundant in numbers and can be obtained without the need of invasive procedures, unlike BMMSCs. Moreover, PDMCs possess significant immunosuppressive properties, which making these cells good candidates for therapeutic applications in an allogeneic setting.
The aim of our study is to discover how the osteoblastic differentiation capabilities of PDMCs are affected by using hydrostatic pressure. Our study showed that these cells provide an excellent source of OB progenitors and data from our study might have clinical therapeutic implications of OP.
關鍵字(中) ★ 靜水壓力
★ 胎盤幹細胞
關鍵字(英) ★ hydrostatic pressure
★ stem cell
★ osteoblastic differentiation
論文目次 CHAPTER 1. Introduction ….....................................................................................1
1.1. Research Motivation-Osteoporosis Clinical Overview.........................................1
1.2. Literature Survey of Stem cells ..………………………………………...........9
1.3. Research Purpose …………………..……………………………………….....13
1.4. Organization of Thesis ....……….…………………….…………………….....14
CHAPTER 2. Osteo-differentiation of Placenta-Derived Multipotent cells (PDMCs)…………………………………………………………………………..15
2.1 Isolation and ex vivo expansion of PDMCs.........................................................16
2.2. Phenotypic characterization of PDMCs .............................................................17
2.3. Osteoblastic differentiation ................................................................................18
2.3.1. Alkaline phosphatase activity assay .......................................................... 19
2.3.2. Alizarin red staining .................................................................................. 20
2.3.3. Quantitative reverse-transcriptase polymerase chain reaction...................... 21
2.4. Immunophenotype of Human Placenta-Derived Multipotent Cells .................. 22
2.5. Osteogenic Differentiation................................................................................. 24
2.5.1. Osteogenic Differentiation ........................................................................ 25
2.6. Characterization of Differentiated PDMCs .................................................... 28
2.7. Summary…………………………………...…………………..……………....31
CHAPTER 3. Hydrostatic Pressure Stimulation on PDMCs …………..…..........34
3.1. Isolation and ex vivo expansion of PDMCs ...................................................... 35
3.2. Statement for using of human materials .............................................................36
3.3. Osteoblastic differentiation of PDMCs ............................................................. 37
3.4. Hydrostatic pressure stimulation ....................................................................... 38
3.4.1. Alizarin red staining after Hydrostatic pressure stimulation………….….…42
3.4.2. Calcium and phosphate deposition assay ......................................................43
3.4.3. Total RNA extraction and quantitative reverse-transcriptase polymerase chain reaction ......................................................................................................... 44
3.5. Statistics analysis.................................................................................................45
3.6. Results …………..……………..……………………………............................46
3.6.1. Calcium deposition was enhanced by hydrostatic pressure stimulation ….. 47
3.6.2. Quantification of osteoblast differentiation gene expressions in PDMCs under hydrostatic pressure stimulation………..…………………….……... 50
3.6.3. Quantification of BMP family and BMP receptor gene expression in PDMCs under hydrostatic pressure stimulation ......................................................... 52
CHAPTER 4. Conclusions…………………….........................................................56
CHAPTER 5. Future work …………..……….........................................................61
REFERENCES ..........................................................................................................62
參考文獻 Angele P, Yoo JU, Smith C, et al.: Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. J Orthop Res 2003, 21: 451-457.
Anselme K: Osteoblast adhesion on biomaterials. Biomaterials 2000, 21(7):667-681.
Allendorph GP, Isaacs MJ, Kawakami Y, Izpisua Belmonte JC and Choe S: BMP-3 and BMP-6 structures illuminate the nature of binding specificity with receptors. Biochemistry 2007, 46: 12238-12247.
Asharani PV, Keupp K, Semler O, et al.: Attenuated BMP1 function compromises osteogenesis, leading to bone fragility in humans and zebrafish. Am J Hum Genet 2012, 90: 661-674.
Batge B, Notbohm H, Diebold J, et al.: A critical crosslink region in human-bone-derived collagen type I. Specific cleavage site at residue Leu95. Eur J Biochem 1990, 192: 153-159.
Born AK, Lischer S, Maniura-Weber K: Watching osteogenesis: life monitoring of osteogenic differentiation using an osteocalcin reporter. J Cell Biochem 2011
Bouman AA, Scheffer PG, Ooms ME, Lips P, Netelenbos C: Two bone alkaline phosphatase assays compared with osteocalcin as a marker of bone formation in healthy elderly women. Clin Chem 1995, 41(2):196-199.
Boyan BD, Hummert TW, Dean DD, Schwartz Z: Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 1996, 17(2):137-146.
Bragdon B, Moseychuk O, Saldanha S, King D, Julian J and Nohe A: Bone morphogenetic proteins: a critical review. Cell Signal 2011, 23: 609-620.
Center JR, Bliuc D, Nguyen ND, Nguyen TV and Eisman JA: Osteoporosis medication and reduced mortality risk in elderly women and men. The Journal of clinical endocrinology and metabolism 2011, 96: 1006-1014.
Chang CJ, Yen ML, Chen YC, Chien CC, Huang HI, Bai CH, Yen BL: Placenta-derived multipotent cells exhibit immunosuppressive properties that are enhanced in the presence of interferon-gamma. Stem Cells 2006, 24(11):2466-2477.
Chang S-F, Chang CA, Lee D-Y.: Tumor cell cycle arrest induced by shear stress: Roles of integrins and Smad. Proceedings of the National Academy of Sciences 2008, 105: 3927-3932.
Chen D, Ji X, Harris MA.: Differential roles for bone morphogenetic protein (BMP) receptor type IB and IA in differentiation and specification of mesenchymal precursor cells to osteoblast and adipocyte lineages. J Cell Biol 1998, 142: 295-305.
Chen D, Zhao M and Mundy GR: Bone morphogenetic proteins. Growth Factors 2004, 22: 233-241.
Chen SK, Chung CA, Cheng YC, et al.: Hydrostatic pressure enhances mitomycin C induced apoptosis in urothelial carcinoma cells. Urologic oncology 2014, 32: 26 e17-24.
Chen SK, Chung CA, Cheng YC.: Toll-like receptor 6 and connective tissue growth factor are significantly upregulated in mitomycin-C-treated urothelial carcinoma cells under hydrostatic pressure stimulation. Genetic testing and molecular biomarkers 2014, 18: 410-416.
Cheng WC, Yen ML, Hsu SH, Chen KH, Tsai KS: Effects of raloxifene, one of the selective estrogen receptor modulators, on pituitary-ovary axis and prolactin in postmenopausal women. Endocrine 2004, 23(2-3):215-218.
Chien CC, Yen BL, Lee FK.: In vitro differentiation of human placenta-derived multipotent cells into hepatocyte-like cells. Stem cells 2006, 24: 1759-1768.
Clause KC, Liu LJ and Tobita K: Directed stem cell differentiation: the role of physical forces. Cell Commun Adhes 2010, 17: 48-54.
Daluiski A, Engstrand T, Bahamonde ME.: Bone morphogenetic protein-3 is a negative regulator of bone density. Nat Genet 2001, 27: 84-88.
Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G: Osf2/Cbfa1: A Transcriptional Activator of Osteoblast Differentiation. Cell 1997, 89(5):747-754.
Elbadawi A, Musto LA, Lilien OM: Combined alizarin red-reticulum stain for tissue localization of calcium deposits. Am J Clin Pathol 1981, 75(3):355-356.
Fickert S, Schroter-Bobsin U, Gross AF, Hempel U, Wojciechowski C, Rentsch C, Corbeil D, Gunther KP: Human mesenchymal stem cell proliferation and osteogenic differentiation during long-term ex vivo cultivation is not age dependent. J Bone Miner Metab 2011, 29(2):224-235.
Freed CR. Will embryonic stem cells be a useful source of dopamine neurons for transplant into patients Parkinson′s disease? Proc Natl Acad Sci USA 2002;99:1755-1757
Freire MO, You HK, Kook JK, Choi JH and Zadeh HH: Antibody-mediated osseous regeneration: a novel strategy for bioengineering bone by immobilized anti-bone morphogenetic protein-2 antibodies. Tissue engineering 2011, Part A 17: 2911-2918.
Friedlaender GE, Perry CR, Cole JD, et al.: Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg Am 2001, 83-A Suppl 1: S151-158.
Gamer LW, Cox K, Carlo JM and Rosen V: Overexpression of BMP3 in the developing skeleton alters endochondral bone formation resulting in spontaneous rib fractures. Dev Dyn 2009, 238: 2374-2381.
Gao Y-H, Shinki T, Yuasa T, Kataoka-Enomoto H, Komori T, Suda T, Yamaguchi A: Potential Role of Cbfa1, an Essential Transcriptional Factor for Osteoblast Differentiation, in Osteoclastogenesis: Regulation of mRNA Expression ofOsteoclast Differentiation Factor(ODF). Biochemical and Biophysical Research Communications 1998, 252(3):697-702.
Griffin L.G., Naughton G. Tissue engineering-current challenges and expanding opportunities. Science 2002, 294:1708-1712
Hoang QQ, Sicheri F, Howard AJ, Yang DSC: Bone recognition mechanism of porcine osteocalcin from crystal structure. Nature 2003, 425(6961):977-980.
Hosking DJ, Geusens P, Rizzoli R: Osteoporosis therapy: an example of putting evidence-based medicine into clinical practice. QJM 2005, 98(6):403-413.
Humphrey JD: Stress, strain, and mechanotransduction in cells. J Biomech Eng 2001, 123: 638-641.
Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP: Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 1997, 64(2):295-312.
Kakinuma S, Tanaka Y.,Chinzei R. Human umbilical cord blood as a source of transplantable hepatic progenitos cells. Stem Cells.2003, 21:217-227
Kaivosoja E, Barreto G, Levon K, Virtanen S, Ainola M, Konttinen YT: Chemical and physical properties of regenerative medicine materials controlling stem cell fate. Ann Med 2011.
Kasten A, Muller P, Bulnheim U, et al.: Mechanical integrin stress and magnetic forces induce biological responses in mesenchymal stem cells which depend on environmental factors. J Cell Biochem 2010, 111: 1586-1597.
Kessler E, Takahara K, Biniaminov L, Brusel M and Greenspan DS: Bone morphogenetic protein-1: the type I procollagen C-proteinase. Science 1996, 271: 360-362.
Kienstra KA, Jackson KA, Hirschi KK: Injury mechanism dictates contribution of bone marrow-derived cells to murine hepatic vascular regeneration. Pediatr Res 2008, 63(2):131-136.
Kiskinis E and Eggan K: Progress toward the clinical application of patient-specific pluripotent stem cells. J Clin Invest 2010, 120: 51-59.
Knothe UR, Dolejs S, Matthew Miller R and Knothe Tate ML: Effects of mechanical loading patterns, bone graft, and proximity to periosteum on bone defect healing. J Biomech 2010, 43: 2728-2737.
Kokabu S, Gamer L, Cox K, et al.: BMP3 suppresses osteoblast differentiation of bone marrow stromal cells via interaction with Acvr2b. Mol Endocrinol 2012, 26: 87-94.
Komori T, Yagi H, Nomura S, et al.: Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 1997, 89: 755-764.
Korbling M, Estrov Z: Adult stem cells for tissue repair - a new therapeutic concept? N Engl J Med 2003, 349(6):570-582.
Langer R, Vacanti J.P. Tissue engineering. Science 1993; 260:920-926
Lee MS, Trindade MCD, Ikenoue T, Schurman DJ, Goodman SB, Smith RL. Effects of shear stress on nitric oxide and matrix protein gene expression in human osteoarthritic chondrocyte in vitro. J Ortho Research2002; 20:556-561
Lim JY, Liu X, Vogler EA, Donahue HJ: Systematic variation in osteoblast adhesion and phenotype with substratum surface characteristics. J Biomed Mater Res A 2004, 68(3):504-512.
Liu J, Zhao Z, Li J, Zou L, Shuler C,Zou y, Huang Z, Li M, Wang J. Hydrostatic pressure promote initial osteodifferentiation with ERK 1/2 not p38 MAPK signaling involved. J cellular Biochem. 2009; 107:224-232
Lutolf MP, Gilbert PM, Blau HM: Designing materials to direct stem-cell fate. Nature 2009, 462(7272):433-441.
Martin I, Wendt D, Heberer M. The role of bioreactors in tissue engineering. TRENDS in Biotechnology 2004;Vol.22 No 2.
Manolagas SC, Jilka RL: Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med 1995, 332(5):305-311.
McAllister TN, Du T, Frangos JA. Fluid shear stress stimulates prostaglandin and nitric oxide release in bone marrow- derived preosteoclast- like cells. Biochemical and biophysical Research Communications 2000;270:643-648
Mishina Y, Starbuck MW, Gentile MA.: Bone morphogenetic protein type IA receptor signaling regulates postnatal osteoblast function and bone remodeling. J Biol Chem 2004, 279: 27560-27566.
Miyazono K, Maeda S and Imamura T: BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev 2005, 16: 251-263.
Nelson HD, Rizzo J, Harris E, et al.: Osteoporosis and fractures in postmenopausal women using estrogen. Archives of internal medicine 2002, 162: 2278-2284.
Neve A, Corrado A and Cantatore FP: Osteoblast physiology in normal and pathological conditions. Cell Tissue Res 2011, 343: 289-302.
Neve A, Corrado A and Cantatore FP: Osteocalcin: skeletal and extra-skeletal effects. J Cell Physiol 2013, 228: 1149-1153.
Nishimura R, Hata K, Matsubara T, Wakabayashi M and Yoneda T: Regulation of bone and cartilage development by network between BMP signalling and transcription factors. J Biochem 2012, 151: 247-254.
Ogawa S, Harada H, Fujiwara M, Tagashira S, Katsumata T, Takada H: Cbfa1, an Essential Transcription Factor for Bone Formation, Is Expressed in Testis from the Same Promoter Used in Bone. DNA Research 2000, 7(3):181-185.
Ortuño MJ, Susperregui ARG, Artigas N, Rosa JL and Ventura F: Osterix induces Col1a1 gene expression through binding to Sp1 sites in the bone enhancer and proximal promoter regions. Bone 52: 548-556.
Pace JM, Wiese M, Drenguis AS, et al.: Defective C-propeptides of the proalpha2(I) chain of type I procollagen impede molecular assembly and result in osteogenesis imperfecta. J Biol Chem 2008, 283: 16061-16067.
Pacifici R: Estrogen, cytokines, and pathogenesis of postmenopausal osteoporosis. J Bone Miner Res 1996, 11(8):1043-1051.
Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR: Multilineage potential of adult human mesenchymal stem cells. Science 1999, 284(5411):143-147.
Preventing osteoporosis, NZ, Ministry of Health, 2012
Rao MS, Mattson MP: Stem cells and aging: expanding the possibilities. Mech Ageing Dev 2001, 122(7):713-734.
Reubinoff BE, Pera MF, Fong CY et al. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 2000;18:399-404
Schumann D, Kujat R, Nerlich M and Angele P: Mechanobiological conditioning of stem cells for cartilage tissue engineering. Biomed Mater Eng 2006, 16: S37-52.
Shirakawa J, Ezura Y, Moriya S, et al.: Migration linked to FUCCI-indicated cell cycle is controlled by PTH and mechanical stress. J Cell Physiol 2014, 229: 1353-1358.
Sipp D: Challenges in the clinical application of induced pluripotent stem cells. Stem Cell Res Ther 2010, 1: 9.
Smith RL, Donlon BS, Gupta MK, Mohtai M, Das P, Carter DR, Cooke J, Gibbons G, Hutchinson N, Schurman DJ. Effects of fluid-induced shear on articular chondrocyte morphology and metabolism in vitro. J Orthop Res 1995;13:824-831
Stevens JA, Olson S: Reducing falls and resulting hip fractures among older women. MMWR Recomm Rep 2000, 49(RR-2):3-12.
Sutton MT and Bonfield TL: Stem Cells: Innovations in Clinical Applications. Stem Cells International 2014: 9, 2014.
Suzuki A, Ghayor C, Guicheux J, et al.: Enhanced expression of the inorganic phosphate transporter Pit-1 is involved in BMP-2-induced matrix mineralization in osteoblast-like cells. J Bone Miner Res 2006, 21: 674-683.
Taiani JT, Buie HR, Campbell GM, et al.: Embryonic stem cell therapy improves bone quality in a model of impaired fracture healing in the mouse; tracked temporally using in vivo micro-CT. Bone 2014, 64: 263-272.
tenDijke P, Korchynskyi O, Valdimarsdottir G and Goumans MJ: Controlling cell fate by bone morphogenetic protein receptors. Mol Cell Endocrinol 2003, 211: 105-113.
Thompson JA, Itskovitz-Eldor J, Shapiro SS et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282:1145-1147
Tsai KS, Yen ML, Pan HA, Wu MH, Cheng WC, Hsu SH, Yen BL, Huang KE: Raloxifene versus continuous combined estrogen/progestin therapy: densitometric and biochemical effects in healthy postmenopausal Taiwanese women. Osteoporos Int 2001, 12(12):1020-1025.
Yen ML, Yen BL, Jang MH, Hsu SH, Cheng WC, Tsai KS: Effects of alendronate on osteopenic postmenopausal Chinese women. Bone 2000, 27(5):681-685.
Yen BL, Huang HI, Chien CC, Jui HY, Ko BS, Yao M, Shun CT, Yen ML, Lee MC, Chen YC: Isolation of multipotent cells from human term placenta. Stem Cells 2005, 23(1):3-9.
Yen ML, Chien CC, Chiu IM, Huang HI, Chen YC, Hu HI, Yen BL: Multilineage differentiation and characterization of the human fetal osteoblastic 1.19 cell line: a possible in vitro model of human mesenchymal progenitors. Stem Cells 2007, 25(1):125-131.
Yousfi M, Lasmoles F, Lomri A, Delannoy P, Marie PJ: Increased bone formation and decreased osteocalcin expression induced by reduced Twist dosage in Saethre-Chotzen syndrome. J Clin Invest 2001, 107(9):1153-1161.
Zhai Y, Chen L, Homme M.: Expression and function of matrix Gla protein in human peritoneal mesothelial cells. Nephrol Dial Transplant 2010, 25: 3213-3221.
余明翰 (Yu, Ming-Han), 2012, 靜水壓對細胞分化及增生影響的實驗研究, 中央大學機械工程學系碩士論文
指導教授 鍾志昂(Chih-An Chung) 審核日期 2015-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明