博碩士論文 954206029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:68 、訪客IP:3.142.94.158
姓名 呂柏宏(Bo-Hong Lyu)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 固定自有倉庫容量下損耗性商品之最佳經濟生產批量
(Optimal economic production quantity of deteriorate item with fixed warehouse capacity)
相關論文
★ 應用灰色理論於有機農產品之經營管理— 需求預測及關鍵成功因素探討★ NAND型Flash價格與交運量預測在風險分析下之決策模式
★ 工業電腦用無鉛晶片組最適存貨政策之研究-以A公司為例★ 砷化鎵代工廠磊晶之最適存貨管理-以W公司為例
★ 資訊分享&決策制定下產銷協同關係之研究 -以IC設計業為例★ 應用分析層級法於電子化學品業委外供應商評選準則之研究
★ 應用資料探勘於汽車售服零件庫存滯銷因素分析-以C公司為例★ 多目標規劃最佳六標準差水準: 以薄膜電晶體液晶顯示器C公司製造流程為例
★ 以資料探勘技術進行消費者返廠定期保養之實證研究★ 以價值鏈觀點探討品牌公司關鍵組織流程之取決-以S公司為例
★ 應用產銷協同規劃之流程改善於化纖產業-現況改善與效益分析★ 權力模式與合作關係對於報價策略之影響研究—以半導體產業A公司為例
★ 應用資料探勘於汽車製造業之庫存原因分析★ 以類神經網路預測代工費報價---以中小面板產業C公司為例
★ 電路板產業存貨改善研究-以N公司為例★ 運用六標準差改善機台備用零件(Spare parts)存貨管理
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 企業基於種種經濟因素考量,在建置自有倉庫時其容量有一定的限制,一經決定之後便很難再做更動。基於眾多因素,零售端常常會囤積許多商品存貨,而因產品價值有時效性的存在,往往會有損耗的情況發生。
在一個生產與銷售的產銷系統中,針對損耗性商品考慮有限的規劃週期與零售端的自有倉庫有容量限制,建構出製造端與零售端的聯合總成本,以總成本最小化為目標來增加企業的核心競爭力,若無法變更容量限制,則找尋是否有其他替代方案來降低總成本。
藉由數學軟體Mathematica 5.2 的幫助,找出產銷系統中最佳的生產次數、最佳週期時間長度以及每週期的最佳生產批量,達到產銷系統總成本極小化的目標。
摘要(英) An enterprise has some limits on owned warehouse capacity that is constant. Besides retailer often stock a lot of inventories that has characteristic of deterioration. A rented warehouse is used when the ordering quantity exceeds the limited capacity of the owned warehouse, and it is assumed that deterioration rates of items in the two warehouses may be different.
This study minimize retailers and manufactures total cost to consider fixed warehouse capacity with deterioration items in a finite planning horizon.
Mathematic software Mathematica 5.2 is used to derive the optimal production times and lots with minimal total cost. Finally, we use a numerical example to illustrate the model.
關鍵字(中) ★ 倉庫容量限制
★ 損耗性商品
★ 數量折扣
關鍵字(英) ★ Deteriorating items
★ Warehouse capacity
★ Quantity discount
論文目次 論文提要 I
Abstract II
目錄 III
表目錄 V
圖目錄 VI
第一章 序論 1
1.1研究背景與動機 1
1.2研究目的 3
1.3研究方法與步驟 4
1.4研究架構 6
第二章 文獻回顧 8
2.1倉庫容量限制之相關文獻 8
2.2損耗性存貨之相關文獻 9
2.3需求模式之相關文獻 11
2.4相關文獻與本研究的比較 12
第三章 模型建構 15
3.1問題描述與定義 15
3.2基本假設與符號說明 15
3.3成本函數建構 17
3.3.1製造端模型建構 17
3.3.2零售端模型建構 18
3.4聯合總成本 20
3.4.1製造端總成本 20
3.4.2零售端總成本 21
3.5考慮數量折扣之聯合總成本 23
4.1數值驗證與比較 24
4.1.1原始模型 24
4.1.2考慮數量折扣之模型 25
4.2敏感度分析 27
4.2.1原始模型 27
4.2.2考慮數量折扣之模型 32
4.3倉庫容量限制對成本的影響 36
4.4商品損耗性對成本的影響 37
4.5數量折扣政策對成本的影響 38
第五章 結論與未來研究方向 40
5.1結論 40
5.2未來研究方向 41
參考文獻 42
附錄 46
一、敏感度分析之表格 46
參考文獻 [1] 石志強. (2000). 在延遲付款期限下的損耗性存貨模式. 中原大學工業工程學系. 碩士論文.
[2] 曾郁芳. (2001). 固定自有倉庫容量下倉租具數量折扣之經濟訂購批量模式. 東吳大學會計學系. 碩士論文.
[3] 陳忠信. (2004). 確定性需求下固定損耗率之易腐性商品聯合存貨模式. 國防管理學院後勤管理研究所 碩士論文.
[4] 陳炫凱. (2007). 需求與存貨水準相依下損耗性產品的最佳補貨政策. 國立中央大學工業管理研究所 碩士論文.
[5] Alamri, A.A., Balkhi, Z.T., (2007), The effects of learning and forgetting on the optimal production lot size for deteriorating items with time varying demand and deterioraion rates., International Journal of Production Economics, Vol. 107, pp. 125-138.
[6] Benkherouf, L., (1997), A deterministic order level inventory model for deteriorating items with two storage facilities., International Journal of Production Economics, Vol.48,pp.167-175.
[7] Bhaba, R. Sarker, (1997), An order-level lot size inventory model with inventory-level dependent demand and deterioration., International Journal of Production Economic, Vol.48, pp.227-236.
[8] Bhunia, A.K., Maiti, M., (1994), A two warehouse inventory model for a linear trend in demand., Opsearch, Vol.31,pp.318-329.
[9] Chang, H. J., and Dye, C. Y., (1999), An EOQ model for deterioration items with time varying demand and partial backlogging., Journal of the Operational Research Society, Vol.50, pp.1176-1182.
[10] Chen, J.M., and Chen, L.T., (2005). Pricing and production lot-size/scheduling with finite capacity for a deteriorating item over a finite horizon., Computers & Operations research, Vol. 32, pp. 2801-2819.
[11] Chung, K.J., et al., (2000). A note on EOQ models for deteriorating items under stock dependent selling rate., European Journal of Operational Research, Vol. 124, pp. 550-559.
[12] Deb, M., and Chaudhuri, K., (1987), “A note on the heuristic for replenishment of trended inventories considering shortages., Journal of the Operational Research Society, Vol.38, pp.459-463.
[13] Dey, J.K., et al., (2008). Two storage inventory problem with dynamic demand and interval valued lead-time over finite time horizon under inflation and time-value of money., European Journal of Operational Research, Vol. 185, pp. 170-194.
[14] Dye, C.Y., et al., (2007). Deterministic inventory model for deteriorating items with capacity constraint and time-proportional backlogging rate., European Journal of Operational Research, Vol. 178, pp. 789-807.
[15] Dye, C.Y., et al., (2007), Determining optimal selling price and lot size with a varying rate of deterioration and exponential partial backlogging., European Journal of Operational Research, Vol. 181, pp. 668-678.
[16] Ghare, P. M. and Schrader, G. F., (1963). A model for an exponentially decaying inventory., Journal of Industrial Engineering, Vol. 14, No. 5, pp. 238-243.
[17] Giri, B.C., and Chaudhuri, K.S., (1998). Deterministic models of perishable inventory with stock-dependent demand rate and nonlinear holding cost., European Journal of Operational Research, Vol. 105, pp. 467-474.
[18] Gupta, R. and Vrat, P., (1986). Inventory model for stock-dependent consumption rate., Opsearch, Vol. 23, No. 1, pp. 19-24.
[19] Hahn, K.H., Hwang, H. and Shinn, S.W. (2004), A returns policy for distribution channel coordination of perishable items., European Journal of Operational Research, Vol. 152, No. 3, pp.770-780.
[20] Hariga, M. A., (1995), An EOQ model for deteriorating items with shortages and time-varying demand., Journal of the Operational Research Society, Vol.46, pp.398-404.
[21] Harris, F.W. (1915), Operations and cost., Chicago.
[22] Hartely, R.V. (1976), Operation Research: A managerial emphais , good year publishing company., California.
[23] Hollier, R. H., and Mak, L., (1983), Inventory replenishment polices for deteriorating items in a declining market., International Journal of Production Research, Vol.21, pp.813-826.
[24] Hou, K.L., (2006). An inventory model for deteriorating items with stock-dependent consumption rate and shortages under inflation and time discounting., European Journal of Operational Research, Vol. 168, pp. 463-474.
[25] Hsieh, T.-P., et al., (2008). Determining optimal lot size for a two-warehouse system with deterioration and shortages using net present value., European Journal of Operational Research, pp. 182-192
[26] Lee, C.C., (2006). Two-warehouse inventory model with deterioration under FIFO dispatching policy., European Journal of Operational Research, Vol. 174, pp. 861-873.
[27] Lee, C.C., and Hsu, S.L., (2007). A Two-Warehouse Production Model for Deteriorating Inventory Items with Time-Dependent Demands., European Journal of Operational Research,
[28] Misra, R.B. (1975), Optimum production lot size model for a system with deteriorating., International Journal of Production Research, Vol. 15, pp. 495-505.
[29] Nahmias, S., (1978). Perishable inventory theory: A review. Operations Research, Vol. 30, No. 4, pp. 680-708.
[30] Padmanabhan, G., and Vrat, P., (1995), EOQ models for perishable items under stock dependent selling rate., European Journal of Operational Research, Vol.86, pp.281-292.
[31] Panda, S., (2008), Optimal replenishment policy for perishable seasonal products in a season with ramp-type time dependent demand., Computers and Industrial Engineering, Vol. 54, pp. 301-314.
[32] Papachristos, S., and Skouri, K., (2000), An optimal replenishment policy for deteriorating items with time-varying demand and partial-exponential type-backlogging., Operations Research Letters, Vol.27, pp.175-184.
[33] Philip, G.C. (1974), A generalized EOQ model for items with Weibull distribution., AIIE Transactions, Vol. 6, pp.159-162.
[34] Raafat, F., (1991). Survey of literature on continuously deteriorating inventory models., Journal of the Operational Research Society, Vol.42, No.1, pp. 27-37.
[35] Rajan, A., et al., (1992), Dynamic pricing and ordering decisions by a monopolist. Management Science, Vol.38, pp.240-262.
[36] Rong, M., et al., (2008). A two warehouse inventory model for a deteriorating item with partially fully backlogged shortage and fuzzy lead time., European Journal of Operational Research, Vol. 189, pp. 59-75.
[37] Roy, A., et al., (2007), Two storage inventory model with fuzzy deterioration over a random planning horizon., Mathematical and Computer Modelling, Vol. 46, pp. 1419-1433.
[38] Sarma, K.V.S. (1983), A deterministic inventory model with two levels of storage and an optimum release rule., Operations Research, Vol. 20, pp. 175-180.
[39] Shah, Y. K., (1977). An order-level lot-size inventory model for deteriorating items., AIIE Transactions, Vol. 9, pp. 108-112.
[40] Skouri, K., et al., (2007), Inventory models with ramp type demand rate, partial backlogging and Weibull deterioration rate., European Journal of Operational Research,
[41] T.P.M. Pakkala, K.K. Achary, A deterministic inventory model for deteriorating items with two warehouses and finite replenishment rate., European Journal of Operational Research 57 (1992) pp.71-76.
[42] Wee, H. M., (1995), A deterministic lot-size inventory model for deterioration items with shortages and a declining market., Computers and Industrial Engineering, Vol.22, pp.345-356.
[43] Wee, H.M., (1999). Deteriorating inventory model with quantity discount, pricing and partial backordering., International Journal of Production Economics, Vol. 59, pp. 511-518.
[44] Yang, H.L., (2004). Two-warehouse inventory models for deteriorating items with shortages under inflation., European Journal of Operational Research, Vol. 157, pp. 344-356.
指導教授 陳振明(Jen-Ming Chen) 審核日期 2008-7-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明