摘要(英) |
In the manufacturing process of TFT-LCD, the flat panel ranking mostly depends
on human’s diagnosis. The output of flat panels increases because of the
establishment of new generation factories and also because of the change of the
market for more small-sized panels. As the result, more manpower is needed to handle
the diagnostic jobs, and it is the manufacturer’s desire to figure out a way to provide
an appropriate solution. The purpose of this research is to apply data mining
technologies to propose an alternative that uses less manpower and satisfies the job
requirement.
The electrical characteristics of flat panels are measured and recorded in the
manufacture process, but there are so many variables that it is not easy to find out the
causes of poor quality. In this research, the goal is to replace manpower with
automatically measured data and to create classification rules without incurring
addition cost. Several models, including C5.0 decision trees, logistic regression, and
Neural Network are considered in this study. The comparison results show that
decision tree (C5.0) can achieve a higher accurate rate in ranking the panels. To apply
the proposed model, the required manpower could be reduced, and still, satisfies the
diagnosis job for ranking panels. |
參考文獻 |
【1】林鼎浩(2000),建構半導體製程資料挖礦架及其實證研究,國立清華
大學工業工程與工程管理學研究所碩士論文。
【2】吳國楨(2000),資料探索在醫學資料庫之應用,私立中原大學醫學工程學
系碩士論文。
【3】謝邦昌(2001),資料採礦入門及應用-從統計技術看資料採礦,資商訊息
顧問公司。
【4】李培瑞(2002),半導體製程資料挖礦架構、決策樹分類法則及其實證研究,
國立清華大學工業工程與工程管理學研究所碩士論文。
【5】劉巧雯(2002),利用資料採礦方法建構半導體晶圓圖之分群分類系統,國
立清華大學工業工程與工程管理學系碩士論文。
【6】陳淑萍(2002),資料探勘應用於財務危機預警模式之研究,私立銘傳大學
資訊管理研究所碩士論文。
【7】謝昌倫(2003),以資料採礦方法辨認半導體晶圓圖的錯誤樣式,私立淡江
大學統計系應用統計研究所碩士論文。
【8】葉怡成(2003),類神經網路模式應用與實作,儒林圖書有限公司。
【9】楊景晴(2004),整合決策樹與關聯規則之資料挖礦架構及其實證研究,國
立清華大學工業工程與工程管理學系碩士論文。
【10】蕭方智(2005),應用階層粒子群方法於決策樹之研究,私立元智大學工業
工程與管理研究所碩士論文。
【11】戴亞翔(2006),TFT-LCD面板的驅動與設計,五南圖書出版股份有限公司。
【12】丁一賢、陳牧言(2006),資料探勘,滄海圖書出版股份有限公司
【13】孫惠明(2007),資料挖掘理論與實務規劃利用,松崗圖書出版股份有限公司。
【14】Berry, M., and Linoff, G(1997), “Data Mining Techniques for Marketing, Sales and Customer Support”, John Wiley and Sons, New York.
【15】Brada, D., and A. Shmilovici(2002), “Data mining for improving a cleaning process in the semiconductor industry”, IEEE Transactions on Semiconductor Manufacturing, Vol. 15, No. 1, pp.91-101
【16】Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone(1984), “Classification and Regression Trees” , Wadsworth, Belmont, CA.
【17】C. Enrique, M.G. Jose, and S.H. Ali(1997), “Expert Systems and Probabilistic Network Models”, Springer-Verlag, New York.
【18】D.Heckerman(1997), “Bayesian networks for data mining”, Data Mining and Knowledge Discovery, Vol. 18, pp.79-119.
【19】Fayyad, U., G. G. Grinstein, and A. Wierse(2001),”Information visualization in data mining and knowledge discovery”, Morgan Kaufmann, San Francisco.
【20】Han, J., and M. Kamber(2000), “Data Mining: Concepts and Techniques”, Morgan Kaufmann, San Francisco.
【21】Kusiak, A., and C. Kurasek(2001), “Data mining of printed-circuit board defects”, IEEE Transactions on Robotics and Automation, Vol. 17, No. 2, pp. 191-196.
【22】Keim, D. A., and H. P. Kriegel(1996), “Visualization Techniques for Mining Large Database: A Comparison,” IEEE Transactions on Knowledge and Data Engineering, Vol. 8, No. 6, pp. 923-938.
【23】SPSS(2006),”Clementine 10.1 Algorithms Guide”,Integral Solution Limited. |