以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:73 、訪客IP:18.219.89.148
姓名 洪春龍(Chun-Lung Hung) 查詢紙本館藏 畢業系所 電機工程學系 論文名稱 彈性多重輸入輸出OFDM系統之低功率可變點數快速傅立葉轉換處理器
(A low power and variable-length FFT processor design for flexible MIMO OFDM systems)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 正交分頻多工(OFDM)技術,提供了抗多路徑干擾與高頻譜效率的特性,因此被廣泛地應用在許多無線通訊系統中。在正交分頻多工系統中,快速傅利葉轉換處理器是其中一個高運算複雜度的模組,在系統中佔了很大功耗比例。因此應用於無線可攜的正交分頻多工系統中,一個低功耗的快速傅利葉轉換處理器便可增加裝置的使用時間。多數正交分頻多工通訊系統都須支援多種點數的快速傅利葉轉換,並且目前一些通訊標準已加入多路徑輸入多路徑輸出(MIMO)技術,因此本論文提出一個可支援多系統標準,且具低功耗及可變長度彈性MIMO的快速傅利葉轉換處理器。在我們的快速傅利葉轉換處理器設計中,因為可彈性地組合變化支援的點數長度與MIMO資料串數,使得記憶體在不同點數下有最佳的使用率。在降低功率消耗與硬體成本設計考量中,我們利用最佳化字元長度可節省128K位元的記憶體,利用適當的排程可使用單埠的記憶體,並使用乒乓快取記憶體架構最多可將一半的記憶體存取轉移到較小的快取記憶體上。最後我們使用TSMC 0.18 μm製程實現支援多系統1024、2048、4096與8192點彈性MIMO的快速傅利葉處理器,晶片核心面積為4.91mm2。單一路徑8192點模式操作在10MHz下,功率消耗約為20.48mW。 摘要(英) Recently, orthogonal frequency-division multiplexing (OFDM) technique has been widely applied in many wireless communication systems due to the multi-path immunity characteristic and high spectrum efficiency. In the OFDM systems, fast fourier transform (FFT) processor is a module requiring high processing complexity. The overwhelming majority of the system power is consumed by such a module. As a result, an FFT processor with low power dissipation can be used to effectively extend the lifespan of the OFDM-based portable devices. Most of the OFDM systems so far support multi-point FFT and certain of them have been with the multi-input multi-output (MIMO) technique. In this thesis, a low-power and variable-length FFT processor is proposed for flexible MIMO-OFDM applications. The memory involved in the proposed FFT processor can provide with a best utility rate as it has been designed to allow variable combinations of the FFT size and numbers of input and output sequences in MIMO system. On the considerations of reducing power dissipation and hardware implementation overhead, a scaling method has been proposed to save the memory up to 128 Kbits by properly scheduling the available single-port memory and using ping-pong cache architecture. Designed in a TSMC 0.18-um process, the proposed design can support 1024, 2048, 4096, and 8192 points for flexible MIMO applications. The proposed design can support 1024, 2048, 4096, and 8192 points for flexible MIMO applications, and is fabricated in a 0.18-μm CMOS technology. The core area of the proposed FFT processor is 4.91 mm2. Under an 8192-point Serial-input Serial-output (SISO) mode, the power dissipation of the proposed FFT processor is 20.48 mW at 10 MHz clock rate. 關鍵字(中) ★ 記憶體式
★ 多路徑輸入多路徑輸出
★ 正交分頻多工
★ 快速傅利葉轉換關鍵字(英) ★ memory-based
★ MIMO
★ FFT
★ OFDM論文目次 摘要................................................i
Abstract............................................ii
致謝................................................ii
目錄................................................iv
圖目錄..............................................vi
表目錄..............................................ii
第一章緒論..........................................1
1.1背景.............................................1
1.2研究動機.........................................3
1.3論文組織.........................................6
第二章FFT演算法.....................................7
2.1時域上錯置(DIT) FFT演算法[24]....................7
2.1.1Radix-2 DIT FFT演算法..........................7
2.1.2Radix-4 DIT FFT演算法..........................9
2.1.3Radix-8 DIT FFT演算法..........................10
2.2 頻域上錯置(DIF) FFT 演算法[24]..................11
2.2.1Radix-2 DIF FFT演算法..........................11
2.2.2Radix-4 / Radix-22 DIF FFT演算法...............13
2.2.3Radix-8 / Radix-23 DIF FFT演算法...............14
2.3比較與總結.......................................15
第三章記憶體式FFT架構...............................17
3.1雙記憶體(Dual-memory)架構[12]....................17
3.2單一記憶體(Single-memory)架構....................18
3.3快取記憶體(Cached-memory)架構[9].................18
3.4乒乓快取記憶體(Ping-Pong Cache Memory)架構[6]....19
3.5比較與總結.......................................20
第四章記憶體式FFT進位調整方式.......................21
4.1區塊浮點數(BFP)..................................21
4.2動態進位調整(Dynamic Scaling)....................23
4.3提出資料調整方式.................................25
4.4比較與分析.......................................26
第五章FFT處理器設計與實現...........................30
5.1連續且依序的I/O..................................30
5.2FFT處理器操作模式................................33
5.3運算處理器.......................................35
5.4主記憶體與快取記憶體.............................36
5.5常數乘法器.......................................38
5.6複數乘法器.......................................39
5.7轉換因子產生器...................................41
5.8晶片設計.........................................42
5.9硬體比較.........................................46
第六章結論..........................................48
參考文獻............................................49參考文獻 [1] Duˇsan Matia, “OFDM as a possible modulation technique for multimedia applications in the range of mm waves,” TUS-TVS, Oct. 1998.
[2] R. W. Chang, “Synthesis of band-limited orthogonal signals for multichannel data transmission,” Bell Syst. Tech. J., vol. 45, pp. 1775-1796, Dec. 1966.
[3] S. B. Weinstein and P. M. Ebert, “Data transmission by frequency division multiplexing using the discrete Fourier transform,” IEEE Trans. Commun., vol. COM-19, Oct. 1971.
[4] L.-F. Chen, Y. Chen, L.-C. Chien, Y.-H. Ma, C.-H. Lee, Y.-W. Lin, C.-C. Lin, H.-Y. Liu, T.-Y. Hsu, and C.-Y. Lee, “A 1.8V 250mW COFDM baseband receiver for DVB-T/H applications,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2006.
[5] Y.-W. Lin and C.-Y. Lee, “Design of an FFT/IFFT processor for MIMO OFDM systems,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 4, pp. 807–815, Apr. 2007.
[6] Y. Chen, Y.-W. Lin, and C.-Y. Lee, “A block scaling FFT/IFFT processor for Wimax applications,” in Proc. 2nd IEEE Asian Solid-State Circuits Conf., Hangzhou, China, pp. 203–206, Nov. 2006.
[7] Y.-W. Lin, H.-Y. Liu, and C.-Y. Lee, “A 1-GS/s FFT/IFFT processor for UWB applications,” IEEE J. Solid-State Circuits, vol. 40, no. 8, pp. 1726–1735, Aug. 2005.
[8] Y.-W. Lin, H.-Y. Liu, and C.-Y. Lee, “A dynamic scaling FFT processor for DVB-T applications,” IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 2005–2013, Nov. 2004.
[9] B. M. Bass, “A low-power, high-performance, 1024-point FFT processor,”IEEE J. Solid-State Circuits, vol. 34, no. 3, pp. 380–387, Mar. 1999.
[10] B. G. Jo and M. H. Sunwoo, "New continuous-flow mixed radix (CFMR) FFT using novel in-place strategy," IEEE Trans. Circuits Syst., vol. 52, pp. 911-919, May. 2005.
[11] Y.-T. Lin, P.-Y. Tsai, and T.-D. Chiueh, "Low-power variable-length fast Fourier transform processor," In Proc. Comput. Digit. Tech., vol. 152, No. 4, pp. 499-506, July 2005.
[12] S. Magar, S. Shen, G. Luikuo, M. Fleming, and R. Aguilar, “An application specific DSP chip set for 100 MHz data rates,” in Proc. Int. Conf. Acoustics, Speech, and Signal Processing, pp. 1989–1992., Apr. 1988.
[13] W.-C. Yeh and C.-W. Jen, “High-speed and low-power split-radix FFT,”IEEE Transactions on Acoustics, Speech, and Signal Processing, Volume.51 Issue.3, pp. 864-874, Mar 2003.
[14] G. Zhong, F. Xu, and A. N. Willson Jr., "A power-scalable reconfigurable FFT/IFFT IC based on a multi-processor ring," IEEE J. Solid-State Circuits, vol. 41, pp. 483-495, Feb. 2006.
[15] L. Jia, Y. Gao, J. Isoaho, and H. Tenhunen, “A new VLSI-oriented FFT algorithm and implement,” in Proc. 11th Annu. IEEE Int. ASIC Conf., Sept. 1998, pp. 337–341.
[16] E. Bidet, D. Castelain, C. Joanblanq, and P. Senn, “A fast single-chip implementation of 8192 complex point FFT,” IEEE J. Solid-State Circuits, vol. 20, pp. 205–300, Mar. 1995
[17] J.-R. Choi, S.-B. Park, D.-S. Han, and S.-H. Park, “A 2048 complex point FFT architecture for digital audio broadcasting system,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), 2000, pp. 693–696.
[18] T. Lenart and V. Öwall, “A 2048 complex point FFT processor using a novel data scaling approach,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), 2003, pp. 45–48.
[19] Y. Chen, Y.-C. Tsao, Y.-W. Lin, C.-H. Lin, and C.-Y. Lee, “An indexed-scaling pipelined FFT processor for OFDM-based WPAN applications,” IEEE Trans. Circuits Syst. II, Express Briefs, vol. 55, no. 2, pp. 146–150, Feb. 2008.
[20] Y. Chen, Y.-W. Lin, Y.-C. Tsao, and C.-Y. Lee, “A 2.4-Gsample/s DVFS FFT processor for MIMO OFDM communication systems,” IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1260–1273, May, 2008.
[21] S. He, and M. Torkelson, “Designing pipeline FFT processor for OFDM (de)modulation” in Proc. IEEE URSI Int. Symp. Signals, Syst., and Electron., pp. 257–262, Oct. 1998.
[22] R. Radhouane, P. Liu, and C. Modlin, “Minimizing the memory requirement for continuous flow FFT implementation: continuous flow mixed mode FFT (CFMM-FFT),” in Proc. IEEE Int. Symp. Circuits Systems (ISCAS), vol. I, pp. 116–119, May, 2000.
[23] C. L. Lin, “Low power mixed-radix single-port memory-based FFT processors for DVB-T/H system applications,” Master Thesis, Institute of Electronics Engineering, National Central University, Jhongli City, Taoyuan County, Taiwan, Jul. 2003.
[24] K. K. Parhi, VLSI Digital Signal Procesing Systems: Design and Implementation. New York: Wiley, 1999.
[25] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1999.
[26] R. N. Bracewell, “The Fourier Transform and Its Applications,” McGraw-Hill, New York, NY, second edition, 1986.
[27] L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975.
[28] C. R. Johnson, and W. A. Sethares, Telecommunication Breakdown, Pearson Prentice Hall, Upper Saddle River, New Jersey, 2004.指導教授 薛木添(Muh-Tian Shiue) 審核日期 2008-10-23 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare