博碩士論文 955201061 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:18.218.245.179
姓名 闕仲宏(Jhong-Hong Cyue)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 利用氫和氧電漿處理透明電極與低壓沉積本質非晶矽鍺吸光層改善非晶矽基合金薄膜太陽能電池的效能
(Improvements of Amorphous Si-Alloy Based Thin-Film Solar Cells with H2/O2- Plasma Treatments on Transparent Electrode and Deposition of i-a-SiGe:H Light Absorption Layer at Low Pressure)
相關論文
★ 金屬-半導體-金屬光偵測器的特性★ 非晶質氮化矽氫基薄膜發光二極體與有機發光二極體的光電特性
★ 具非晶質n-i-p-n層之氧化多孔矽發光二極體的光電特性★ 低漏電流與高崩潰電壓大面積矽偵測器製程之研究
★ 具自行對準凹陷電極1x4矽質金屬-半導體-金屬光偵測器陣列的特性★ 非晶矽射極異質雙載子電晶體與有機發光二極體的特性
★ 吸光區累崩區分離的累崩光二極體★ 蕭特基源/汲極接觸的反堆疊型非晶質矽化鍺薄膜電晶體
★ 矽晶圓上具有隔離氧化層非晶質薄膜發光二極體之光電特性★ 具非晶異質接面及溝渠式電極之矽質金屬-半導體-金屬光偵測器的暗電流特性
★ 非晶矽/晶質矽異質接面矽基金屬-半導體-金屬光檢測器與具非晶質無機電子/電洞注入層高分子發光二極體之研究★ 具非晶質矽合金類量子井極薄障層之高靈敏度平面矽基金屬–半導體–金屬光檢測器
★ 具蕭特基源/汲極的上閘極型非晶矽鍺與 多晶矽薄膜電晶體★ 大面積矽偵測器的製程改良與元件設計
★ 具組成梯度能隙非晶質矽合金電子注入層與電洞緩衝層的高分子發光二極體★ 非晶質吸光區與累增區分離之類超晶格累崩光二極體
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本論文中,我們利用氫和氧電漿處理透明導電電極與低壓沉積製備非晶本質矽鍺膜來提升非晶矽基薄膜太陽能電池的特性。首先,因串聯電阻對非晶矽基薄膜太陽能電池的特性有相當大的影響,利用氫和氧電漿可去除透明導電電極表面之碳氫化合物污染,提高其功函數,並降低其與非晶薄膜之間的蕭特基位障,實驗結果顯示先用氫氣電漿(100 W, 0.4 torr, 基板溫度=25℃)處理5分鐘再用氧氣電漿(55 W, 0.15 torr, 基板溫度=25℃)處理5分鐘可明顯提昇元件特性。此外,我們在低壓沉積非晶本質矽鍺吸光層用以減少薄膜中的Si=H2 鍵結,進而提升非晶矽基薄膜太陽能電池的特性,所製作出的梯度非晶矽基薄膜太陽能電池,其轉換效率可達到百分之 3.63。
摘要(英) In this thesis, the H2/O2-plasma treatments on transparent indium-tin-oxide (ITO) electrode and deposition of i-a-SiGe:H absorption layer at low pressure have been used to improve the performance of amorphous Si-alloy based thin-film solar cells. Firstly, since that the series resistance between the ITO electrode and amorphous layer plays an important role in the performance of a solar cell, the in-situ plasma treatments was employed to improve the contact and it was found that the performance of a p-i-n a-Si:H thin-film solar cell could be enhanced with the H2-plasma (100 W, 0.4 torr, 25 ℃ and 5 min.) and then O2-plasma (55 W, 0.15 torr, 25 ℃ and 5min.) treatments on ITO electrode. This was due to the combination of H2- and O2-plasma treatments could remove the hydrocarbon compounds and increase the work function of ITO electrode. Hence, the Schottky barrier height between the ITO and amorphous layer could be lowered. In addition, the i-a-SiGe:H absorption layer was deposited at a lower pressure of around 0.25 torr with a plasma-enhanced chemical vapor deposition system, to reduce the amount of Si=H2 bonds in the film and hence improve the performance of graded ITO/p-SiC:H/buffer layer (i-a-SiC:H)/i-a-Si:H/interface layer/i-a-SiGe:H/n-a-Si:H/Al solar cell. In this study, the highest obtainable conversion efficiency of this graded solar cell was 3.63 %.
關鍵字(中) ★ 非晶矽基薄膜太陽能電池 關鍵字(英) ★ PECVD
★ plasma treatment
★ solar cell
論文目次 CONTENTS
Table Captions……………………………………………………………...V
Figure Captions…………………………………………………………….VI
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 DEVICE OPERATION PRINCIPLES 4
2.1 Basic principles of solar cell [16] 4
2.2 Fundamental parameters of solar cell [17] 5
2.3 Ohmic resistance in real solar cell [5] 9
CHAPTER 3 DEVICE FABRICATION AND MEASUREMENT TECHNIQUES 11
3.1 Preparations of various amorphous films [18] 11
3.1.1 Deposition system 11
3.1.2 Depositions of a-SiC:H , a-SiGe:H and a-Si:H films 13
3.2 Device synopsis 18
3.3 Plasma treatment for graded solar cell 22
3.4 Device fabrication for graded solar cell 23
3.5 Measurement techniques 24
3.5.1 Optical-gap of amorphous film [23] 24
3.5.2 Dark and photo I-V measurements 25
3.6 Effects of plasma treatment on ITO 28
3.7 Effects of a-SiGe:H layer on solar cell 29
CHAPTER 4 RESULTS AND DISCUSSION 32
4.1 Treating ITO with O2-plasma, H2-plasma and (H2/O2)-plasma 32
4.2 Fabrication of highly photosensitive a-SiGe:H 42
CHAPTER 5 CONCLUSION 49
REFERENCES 50
參考文獻 REFERENCES
[1] D. E Carlson and C. R. Wronski ,“Amorphous silicon solar cell,” Appl. Phys. Lett., vol. 28, p. 671, 1976.
[2] J. J. Hanak, “Stacked solar cells of amorphous silicon,” J. Non-Cryst. Solids , vol. 35, p. 755, 1980.
[3] F. Smole, M. Topic, and J. Furlan, “Correlation between TCO/p and p/i heterojunction and effect of n/TCO heterojunction on a-Si:H solar cell performance,” IEEE Photovoltaic Specialists Conference, vol. 1, p. 491, 1994.
[4] F. S. Sinencio and R. Williams, “Barrier at the interface between amorphous silicon and transparent conducting oxides and its influence on solar cell performance,” J. Appl. Phys. , vol. 54, p. 2757, 1984.
[5] A. Goetzberger, J. Knobloch and B. Voss, Crystalline Silcon Solar Cells, John Wiley & Sons, Inc., Chap 5, p.79, 1988.
[6] D. J Milliron, I. G. Hill, C. Shen, A. Kahn and J. Schwarz,“Surface oxidation activates indium tin oxide for hole injection,” J. Appl. Phys., vol. 87, no. 1, 2000.
[7] D. Kruangam, M. Deguchi, T. Toyama, H. Okamoto, and Y. Hamakawa,“Carrier Injection Mechanism in a-SiC p-i-n Junction Thin-Film LED,”IEEE Trans. Electron Devices, vol. 35, p. 957, 1988.
[8] X. Deng,“Optimization of a-SiGe based triple, tandem and single-junction solar cells,”Photovoltaic Specialists Conference, 2005. Conference Record of the Thirty-first IEEE, p. 1365, 2005.
[9] S. Moriuchi, Y. Inoue, H. Sannomiya, A. Yokota, M. Itoh, Y. Nakata, and H. Itoh,“High reliability three-stacked amorphous-silicon solar cell,”Photovoltaic Specialists Conference, 1990., Conference Record of the Twenty First IEEE, vol. 2, p. 1449, 1990.
[10] X. Zhongyang, Z. Xuecheng, Z. Xuemei, Z. Bofang, and W. Changan,“Optimum design and preparation of a-Si/a-Si/a-SiGe triple-junctionsolar cells,” J. Appl. Phys., vol. 75, no.1 , 1994.
[11] X. YQ, A. Mahan , L. Gedvilas , R. Reedy and H. M. Branz ,“Deposition of photosensitive hydrogenated amorphous silicon-germanium films with a tantalum hot wire,”Thin Solid Films ,vol. 501, p. 198, 2006.
[12] S. Guha, X. Xu, J. Yang, and A. Banerjee,“High deposition rate amorphous silicon-based multijunction solar cell,”Appl. Phys. Lett., vol. 66, p. 5, 1995.
[13] Jun Xu , Kazutoshi Shiba , Seiichi Miyazaki a, Masataka Hirose, Kunji Chen and Duan Feng,“Device-grade a-SiGe:H alloys prepared by nanometer deposition/H2 plasma annealing method,” J. Non-Cryst. Solids vol. 198, p. 582 , 1996.
[14] V. L. Dalal, “Growth chemistry of amorphous silicon and amorphous silicon–germanium alloys,” Current Opinion in Solid State and Materials Science, vol. 6, p.455, 2002.
[15] M.S. Abo Ghazala,“Composition and electronic properties of a-SiGe : H alloys produced from ultrathin layers of a-Si : H/a-Ge : H,” Physica B, vol. 293, p. 132, 2000.
[16] S. S. Chen, “Effects of antireflection coating and prismatic cover on Ⅲ-Ⅴ solar cell’s performance,” M. S. Thesis, CYCU, Taiwan, R.O.C., 2005.
[17] 莊嘉琛,“太陽能工程. 太陽電池篇,”全華圖書,(1997).
[18] T. C. Chung, “Opoelectronic characteristics of green-blue-white a-SiN:H-based p-i-n thin film emitting diodes (TFLEDs),” M. S. Thesis, NCU, Taiwan, R.O.C., 1998.
[19] Ginn-Hong Chen “Design and Fabrication of Alternating Current a-SiC:H Thin-film Light-Emitting Diodes,” M. S. Thesis, NCU, Taiwan, R.O.C., 2005.
[20] J. C. Wang, “Improving the characteristics of amorphous metal semiconductor-metal photodetectors (MSM-PDs),” M. S. Thesis, NCU, Taiwan, R.O.C., 1996.
[21] Ruud E.I. Schropp and Miro Zeman, Amorphous and Microcrystalline Silicon Solar Cells, Kluwer Academic Publishers, 1998.
[22] R. A. C. M. M. van Swaaij, M. Zeman, S. Arnoult, and J. W.Metselaar, “Performance dependence on grading width of a-SiGe:H component solar cells,” Proc. 28th IEEE Photovoltaic Specialists Conf., pp. 869-872, 2000.
[23] T. R. Yu, “Design and fabrication of a-C:H and a-SiN:H alternating-current white thin-film light-emitting diodes,” M. S. Thesis, NCU, Taiwan, R.O.C., 2006.
[24] J. Tauc, Amorphous and Liquid Semiconductors, chap. 5, Plenum Press, p. 175, 1974.
[25] Jin-Jhan Jheng,“p-i-n solar cell with composition-graded amorphous silicon-alloy layers,”M. S. Thesis, NCU, Taiwan, R.O.C., 2007.
[26] M.A. Martı´nez , M.T. Gutie´rrez and C. Maffiotte,“Chemical changes of ITO/p and ZnO/p interfaces as a function of deposition parameters,” Surface and Coatings Technology, vol. 110, p. 68, 1998.
[27] F. Sánchez-Sinencio and Richard Williams,“Barrier at the interface between amorphous silicon and transparent conducting oxides and its influence on solar cell performance,” J. Appl. Phys., vol. 54, p. 2757, 1983.
[28] E. Centurioni and D. Iencinella, “Role of front contact work function on amorphous silicon/crystalline silicon heterojunction solar cell performance,” IEEE Electron Device Lett., vol. 24 , p. 177, 2003.
[29] H. Y. Yu, X. D. Feng, D. Grozea, Z. H. Lu, R. N. S. Sodhi, A-M. Hor and H. Aziz, “Surface Electronic Structure of Plasma-Treated Indium Tin Oxides,” Appl. Phys. Lett., vol. 78, p. 2595, 2001.
[30] J. H Thomas, III,“X-ray photoelectron spectroscopy study of hydrogen plasma interactions with a tin oxide surface,”Appl. Phys. Lett.,vol. 42, p.794, 1983.
[31] Keiichi Furukawa, Yoshihisa Terasaka , Hideaki Ueda and Michio Matsumura, “Effect of a plasma treatment of ITO on the performance of organic electroluminescent devices,” Synthetic Metals, vol. 91, p. 99, 1997.
[32] Z. H. Huang , X. T. Zeng , X. Y. Sun , E.T. Kang , Jerry Y. H. Fuh and L. Lu, “Influence of plasma treatment of ITO surface on the growth and properties of hole transport layer and the device performance of OLEDs,” Organic Electronics, vol. 9, p. 51, 2008.
[33] K. Wakisaka, H. Haku, M. Taguchi, K. Sayama, S . Tsuge, H. Dohjoh, Y. Hishikawa, M. Isomura, N. Nakamura, S . Tsuda, S . Nakano, Y. Kishi and Y. Kuwano,“Efficiency improvement in a-Si and a-SiGe solar cells using a super chamber method,” Photovoltaic Specialists Conference, 1991., Conference Record of the Twenty Second IEEE, vol.2, p. 1254, 1991.
指導教授 洪志旺(Jyh-Wong Hong) 審核日期 2008-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明