博碩士論文 955201079 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:62 、訪客IP:3.144.93.6
姓名 謝育書(Yu-shu Hsieh)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 K-Band及Q-Band毫米波帶通濾波器設計
(Millimeter-wave bandpass filter designs for K-band and Q-band applications)
相關論文
★ 用於行動上網裝置之智慧型陣列天線★ 吸收式帶止濾波器之研製
★ 一維及二維切換式波束掃描陣列天線★ 寬頻微型化六埠網路接收機
★ 具有良好選擇度的寬頻吸收式帶止濾波器★ 微小化吸收式帶止濾波器之通帶改善
★ 共面波導帶通濾波器之研製★ 微帶耦合線帶通濾波器與雙工器研製
★ 宇宙微波背景輻射陣列望遠鏡接收機 之校準信號源研製★ 薄膜製程射頻被動元件設計
★ 微波帶通低雜訊放大器設計★ 積體式微波帶通濾波器之研製
★ 應用於高位元率無線傳輸系統之V頻段漸進式開槽天線陣列★ 以多重耦合線實現多功能帶通濾波器
★ 以單刀雙擲帶通濾波器實現高整合度射頻前端收發系統★ 以多重耦合線實現單端至平衡帶通濾波器之分析與設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 論文摘要
本論文利用GaAs 積體電路來實現單晶片帶通濾波器,提出兩種非常適合實
現於GaAs 單晶片系統的濾波器架構。首先,本論文提出「新式步階阻抗微帶耦
合線帶通濾波器」來設計Q-Band 毫米波寬頻帶通濾波器,通帶範圍為
31.3~45GHz,在此架構中,利用步階阻抗概念實現共振器長度小於四分之一波長
的微帶耦合線帶通濾波器,其電路面積較傳統使用四分之一波長共振器設計者縮
小1/4 以上,並且利用傳輸零點使29GHz 的衰減量大於37dB,可應用於ALMA
Band-1 無線電波天文望遠鏡接收機系統,並大幅減少接收機體積與整合難度。
此外,本論文亦提出「新式電容負載髮夾型微帶耦合線帶通濾波器」來設計
K-Band FMCW 雷達系統用窄頻帶通濾波器,通帶範圍為24~26GHz,在此架構中,
利用新式電容負載髮夾型共振器為基礎所設計的帶通濾波器,其電路面積較傳統
使用二分之一波長共振器設計者縮小3/4 以上,且30dB 止帶衰減的頻率上限可
大於0 2.68fo 。而本論文也另設計一Q-Band 波導管帶通濾波器,做為單晶片帶通
濾波器的特性比較參考標準。
針對本論文提出的兩種帶通濾波器架構,我們皆先以印刷電路板設計射頻頻
段帶通濾波器來驗證所提出的設計流程與公式,並都達到良好的特性,第一種設
計透過步階阻抗共振器的特性可以將止帶頻寬拓展到7.6fo ;第二種設計透過電
容值的選擇,可以將每段耦合線長度縮小到 λ/12 以下,實做與模擬結果也都很
吻合。
在本論文中,針對各式微帶耦合線的不同特性均詳細加以研究,並討論應用
於濾波器的最佳實施方式,而針對各種設計,均有一整套簡捷明瞭的設計流程作
為設計工具,同時也為未來進一步的改良提供更多的設計彈性。
摘要(英) Abstract
In this study, two kinds of on-chip bandpass filters are proposed and
implemented using the GaAs pHEMT process. They are very suitable for the design
of GaAs single-chip transceiver. For the Q-Band bandpass filter with wide bandwidth
from 31.3 to 45GHz, the novel planar coupled-line filters with step-impedance
resonators are proposed. The resonators can be made much smaller than conventional
quarter-wavelength resonators. Compared to the conventional parallel-coupled
bandpass filters that are based on quarter-wavelength resonators, the circuit size of
proposed filters are reduced by more than 1/4. In addition, by utilizing the inherent
transmission zeros resulted from cross-coupling, the rejection at 29GHz is better than
37 dB . The proposed Q-Band filters meet the requirements of ALMA Band-1 radio
telescope receiver, and have the advantages of reducing size, weight, and complexity
in system integration. On the other hand, for the K-Band bandpass filter with narrow
bandwidth from 24 to 26GHz, the planar hairpin-line filters with loaded capacitors are
proposed. The circuit size of this filter can be reduced by half compared to
conventional hairpin-line bandpass filters. The 30dB stopband bandwidth of
proposed K-Band filter can be extended up to 4.6fo . In addition, a WR22
waveguide-based Q-Band bandpass filter is also implemented for bench-marking.
In order to verify the effectiveness of proposed filter design equations and
procedure, two planer bandpass filters with bandwidths from 2.3~2.7GHz are also
fabricate on PCB. For the step-impedance design, the 30 dB stopband bandwidth is
up to 7.6fo . For the hairpin filter with loaded capacitor, the length of coupled-line can
be reduced to λ/12 . All the measurement results agree well with the simulation ones.
In this work, the characteristics of different kinds of coupled-line sections are
thoroughly investigated so as to make the best use of them in bandpass filter designs.
Simple and explicit design flows have also been proposed for all designs, which allow
the easy extension of proposed filter structures for further improvement in the future.
關鍵字(中) ★ 帶通濾波器
★ Q-Bnad
★ K-Band
關鍵字(英) ★ bandpass filter
★ Q-Bnad
★ K-Band
論文目次 目錄
論文摘要............................................................I
英文摘要...........................................................II
致謝...............................................................III
圖形列表...........................................................VI
表格列表...........................................................IX
第一章 簡介
   1.1 研究動機..................................................1
1.2 文獻回顧..................................................2
1.3 章節介紹..................................................4
第二章 Q-Band 波導管帶通濾波器
   2.1 .電路架構................................................5
   2.2 .濾波器設計..............................................9
   2.3 .總結...................................................17
第三章 Q-Band GaAs 新式耦合線帶通濾波器
   3.1 .電路架構...............................................18
   3.2 .濾波器公式推導與設計...................................21
3.2.1 濾波器公式推導...................................21
3.2.2 低頻帶通濾波器設計...............................23
3.2.3 Q-Band GaAs帶通濾波器設計........................35
   3.3 .總結...................................................64
第四章 K-Band GaAs 新式髮夾型帶通濾波器
   4.1 .電路架構...............................................65
   4.2 .濾波器公式推導與設計...................................68
4.2.1 濾波器公式推導...................................68
4.2.2 低頻帶通濾波器設計...............................69
4.2.3 K-Band GaAs帶通濾波器設計........................76
   4.3 .總結...................................................85
第五章 結論.......................................................86
參考文獻...........................................................88
附錄..............................................................91
參考文獻 參考文獻
[1] M.-A. Morgan and S. Weinreb, “Techniques for the integration of high-Q millimeter-wave filters in multi-function MMIC modules,” Microwave Journal, Apr. 2005.
[2] K.-W. Fan, C.-C. Weng, Z.-M. Tsai, H. Wang, S.-K. Jeng, “K-band MMIC active band-pass filters,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 1, pp. 19–21, Jan. 2005.
[3] L. Rigaudeau, P. Ferrand, D. Baillargeat, S. Bila, S. Verdeyme, M. Lahti and T. Jaakola, “LTCC 3-D resonators applied to the design of very compact filters for Q-band applications,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2620–2627, Jun. 2006.
[4] P. Ferrand, D. Baillargeat, S. Verdeyme, J. Puech, M. Lahti and T. Jaakola, “LTCC reduced-size bandpass filters based on capacitively loaded cavities for Q band application,” in IEEE MTT-S Int. Microwave Symp. Dig., pp. 12–17, Jun. 2005.
[5] J.-T. Kuo and E. Shih, “Microstrip stepped impedance resonator bandpass filter with an extended optimal rejection bandwidth,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 5, pp. 1554–1559, May. 2003.
[6] S.-C. Lin, P.-H. Deng, Y.-S. Lin, C.-H. Wang, and C.-H. Chen, “Wide-stopband microstrip bandpass filters using dissimilar quarter-wavelength stepped- impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 3, pp. 1011–1018, Mar. 2006.
[7] S.-C. Lin, T.-N. Kuo, Y.-S. Lin, and C.-H. Chen, “Novel coplanar-waveguide bandpass filters using loaded air-bridge enhanced capacitors and broadside-coupled transition structures for wideband spurious suppression,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 8, pp. 3359–3369, Aug. 2006.
[8] S.-S. Myoung , Y. Lee, and J.-G. Yook, “Bandwidth-compensation method for miniaturized parallel coupled-line filters,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 7, pp. 1531–1538, July 2007.
[9] C.-Y. Hung, M.-H. Weng, R.-Y. Yang, and Y.-K. Su, “Design of the compact parallel coupled wideband bandpass filter with very high selectivity and wide stopband,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 7, pp. 510–512, July 2007.
[10] M.-S. Chung, I.-S. Kim, and S.-W. Yun, “Varactor-tuned hairpin bandpass filter with an attenuation pole,” in Proc. Asia-Pacific Microwave Conf., vol. 4, pp. 4-7, Dec. 2005.
[11] M.-S. Chung, I.-S. Kim, and S.-W. Yun, “Varactor-tuned hairpin bandpass filter with eEnhanced stopband performance,” in Proc. Asia-Pacific Microwave Conf., pp. 12-15, Dec. 2006.
[12] S. B. Cohn, “Direct coupled resonator filters,” Proc. IRE, vol. 45. pp. 187~196, February, 1957.
[13] W. W. Mumford, Maximally flat filters in waveguides, Bell System Tech. J., vol. 27, pp. 684~714, Oct. 1984.
[14] S. B. Cohn,” Parallel-coupled transmission-line-resonator filters,” IEEE Trans. Microw. Theory Tech., vol. 6, no. 2, Apr. 1958.
[15] G..-L. Matthaei, “Direct-coupled band-pass filters with resonators,” IRE International Convention Record, vol. 6, Part 1, pp. 98-111, Mar. 1958.
[16] C.-H. Wu, Y.-S. Lin, C.-H. Wang, C.-H. Chen, “Compact microstrip coupled- line bandpass filter with four transmission zeros,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 9, pp. 579–581, Sep. 2005.
[17] C.-H. Wu, C.-H. Wang, Y.-S. Lin, C.-H. Chen, “Parallel-coupled coplanar -waveguide bandpass filter with multiple transmission zeros,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 2, pp. 118–120, Feb. 2007.
[18] R. E. Collin, Foundations for Microwave Engineering, 2nd Edition, McGraw-Hill, Inc., 1992.
[19] Y.-S. Lin, C.-H. Wang, C.-H. Wu and C.-H. Chen, “Novel Compact Parallel-Coupled Microstrip Bandpass Filters With Lumped-Element K-Inverters,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 7, pp. 2324–2328, July 2005.
[20] C.-M. Tsai and H.-M. Lee, “Improved design equations of the tapped-line structure for coupled-line filters,” IEEE Microwave Wireless Comp. Lett., vol. 17, pp. 244-246, Apr. 2007.
[21] Y.-S. Lin and C.-C. Cheng, “Miniature microstrip bandpass filters based on capacitive loaded coupled-lines and lumped-element K-inverters,” IEICE Trans. Electron., vol. E90-C, no. 12, pp. 2218-2225, Dec. 2007.
[22] Y.-S. Lin and C.-C. Cheng, “Miniature CPW parallel-coupled bandpass filter based on inductive loaded coupled-lines and lumped-element J-inverters,” IEEE Microwave Wireless Comp. Lett., vol. 17, pp. 343-345, May. 2007.
[23] J. S. Hong, M. J. Landcaster, Microstrip Filters for RF/Microwave Application, John Wiley & Sons, Inc., 2001.
[24] G. L. Matthaei, L. Yong, E. M. T. Jones, Microwave Filters, Impedance -Matching Networks, and Coupling Structures, McGraw-Hill, Inc. 1980.
[25] D. M. Pozar, Microwave Engineering, 3nd Edition, John Wiley & Sons, Inc., 2005.
指導教授 林祐生(Yo-Shen Lin) 審核日期 2008-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明