博碩士論文 955201093 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:136 、訪客IP:3.145.59.89
姓名 吳維軒(Wei-Hsuan Wu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 獨立成份分析法於即時心電訊號萃取應用
(The measurement and application of Independent Component Analysis in instant ECG)
相關論文
★ 使用梳狀濾波器於相位編碼之穩態視覺誘發電位腦波人機介面★ 應用電激發光元件於穩態視覺誘發電位之腦波人機介面判斷
★ 智慧型手機之即時生理顯示裝置研製★ 多頻相位編碼之閃光視覺誘發電位驅動大腦人機介面
★ 以經驗模態分解法分析穩態視覺誘發電位之大腦人機界面★ 利用經驗模態分解法萃取聽覺誘發腦磁波訊號
★ 明暗閃爍視覺誘發電位於遙控器之應用★ 使用整體經驗模態分解法進行穩態視覺誘發電位腦波遙控車即時控制
★ 使用模糊理論於穩態視覺誘發之腦波人機介面判斷★ 利用正向模型設計空間濾波器應用於視覺誘發電位之大腦人機介面之雜訊消除
★ 智慧型心電圖遠端監控系統★ 使用隱馬可夫模型於穩態視覺誘發之腦波人機介面判斷 與其腦波控制遙控車應用
★ 使用類神經網路於肢體肌電訊號進行人體關節角度預測★ 使用等階集合法與影像不均勻度修正於手指靜脈血管影像切割
★ 應用小波編碼於多通道生理訊號傳輸★ 結合高斯混合模型與最大期望值方法於相位編碼視覺腦波人機介面之目標偵測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 以往國人對於醫療的認知還是停留在醫院內醫生必須直接面對病人做診斷,但近年來,國人對於醫療與人性化的概念有了更深一層的認識,並且將這兩者做了結合,所以對病人而言,他們的生活空間並不僅僅被侷限在醫院內,更可以是在家中或是戶外,而這些進步大大的改善了病人的生活方式,但此進步必須建立於遠端醫療與居家看護系統的發展上,有鑑於此,最重要的就是要精確的知道病人的現在身體狀況以供遠端醫院的醫生做即時診斷,以患有心血管疾病的人來說,要知道他的心臟狀況,就必須靠著心電圖(Electrocardiogram,ECG)讓醫生做判斷,但是由於人體在活動中會產生許多訊號,例如:肌電訊號(Electromyography,EMG)等,甚至機器等會帶有電力線的雜訊干擾,所以要如何從量測到的訊號中正確的分離出ECG訊號或其他生理訊號則是此篇文章的重點。
獨立成份分析法(Independent Component Analysis,ICA)[1]最初發展出來約在1990年,在這裡我們使用獨立成份分析法即時的對於所量測到的訊號作來源訊號的分離與重建,量測訊號取得我們使用六個電極貼片分別貼在兩隻手前臂前端內側,期間我們嘗試做簡單的擺動手臂,拿東西等一些動作,然後使用獨立成份分析法去作即時分離我們所量測到的訊號,結果我們成功的分離出正確的ECG訊號,相信此舉對於遠端醫療與居家看護系統的發展相信能提供一大助力。
摘要(英) With the developments of advanced medical instruments in recent years, the remote medicine and homecare system have been recognized as a new trend in the interaction between patients and doctors. This trend changes the life style of care medicine. Patients can use advanced nursing systems to record their physiological data at home and transmit these data to hospital network for necessarily monitoring. Nevertheless, these achievements require the novel developments of medical instruments, especially the noise-proof performance of these instruments.
In this study, we aim to develop an Independent Component Analysis (ICA)-based ECG care system. ICA is a multi-variable technique which has been validated as a powerful tool for separating different signals according to their distinct statistical distributions. With the benefit of ICA, physiological and environmental ECG-unrelated noise can be removed so that the ECG signals can be extracted in low signal-to-noise (SNR) situation, even during uses’s limb movements. In order to validate the performance of the proposed ICA-based system, we attached six ECG electrodes (three on left hand and the other three on right hand) to extract the surface ECG of a user. ECG-unrelated noise and physiological signals, such as 60 Hz electricity noise, low frequency drifts and electromyogram contaminations can be identified and removed. Currently, we have implemented the ICA-based ECG care system on Labview platform for real-time processing. Further developments are required to realize the technique using dsPIC microprocessor for portable homecare purposes..
關鍵字(中) ★ 肌電訊號
★ 心電圖
★ 獨立成份分析法
關鍵字(英) ★ Independent Component Analysis(ICA)
★ Electrocardiogram (ECG)
★ Electromyography (EMG)
論文目次 目錄
中文摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XIII
第一章 緒論 1
1.1前言 1
1.2相關研究於生理訊號文獻回顧 2
1.3研究動機 2
1.4研究目的 3
1.5研究方法 3
1.6論文架構 4
第二章 心電圖原理介紹 5
2.1生理訊號簡介 5
2.2心電圖簡介 5
2.2.1心電圖來源 6
2.2.2向量與導程的概念 7
2.2.3十二導程 7
2.3心電圖功能 9
第三章 研究理論與方法 10
3.1 引言 10
3.2 獨立成份分析法原理簡介 10
3.3 訊號原理簡介 13
3.3.1 峰態(kurtosis) 14
3.3.2 熵(entropy) 15
3.4 獨立成份分析法演算流程 17
3.4.1 第一部分:資料的前置處理 18
3.4.2 第二部份: Fixed-point algorithm using kurtosis 20
3.4.3 第三部份:重建來源訊號的大小 24
第四章 實驗原理與流程 25
4.1實驗說明 25
4.2 實驗架構 26
4.2.1硬體架構 26
4.2.2軟體架構 28
第五章 實驗結果 35
5.1模擬混合訊號的分離 35
5.2實驗前言 37
5.2.1即時訊號分離系統-身體放鬆 38
5.2.2即時訊號分離系統-手臂動作 42
5.2.3即時訊號分離系統-手臂用力 46
5.2.4即時訊號分離系統-電力線雜訊增強 51
5.2.5即時訊號分離系統-走路 55
5.2.6即時訊號分離系統-肢體碰觸 59
第六章 結論 64
參考文獻 66
參考文獻 參考文獻
[1].T .W. Lee, Independent Component Analysis: Theory and Applications, Kluwer Academic Publishers, Boston, MA, 1998.
[2].行政院衛生署國民健康局,。http://www.bhp.doh.gov.tw/BHPnet/Portal/.
[3].A. Hyvärinen, J. Karhunen and E. Oja, Independent Component Analysis, John Wiley & Sons, Inc., New York, 2001.
[4].R. Vigário, J. Särelä, V. Jousmäki, M. Hämäläinen, and E. Oja, “Independent Component Approach to the Analysis of EEG and MEG Recording,” IEEE Trans. Biomed. Eng., vol. 47, pp.589-593, 2000.
[5].Koredianto Usman et al, “A Study of Heartbeat Sound Separation Using Independent Component Analysis Technique”, IEEE 6th International Workshop on
[6].L. De Lathauwer, B. De Moor, and J. Vandewalle, “Fetal Electrocardio- gram Extraction by Blind Source Subspace Separation,” IEEE Trans. Biomed. Eng., vol. 47, pp.567-572, 2000.
[7].馬偕紀念院, http//www.mmh.org.tw/taitam/csc/doc/ekgbasic.htm.
[8].Frank G. Yanowitz, M.D.,1997. http://www.pharmacology2000.com/Cardio/Cardio_risk/adult_cardiac_procedures/anatomy3.htm.
[9].李玉菁 何杏棻等人,人體解剖學,文京圖書有限公司,1996。
[10].A. Hyvarinene and E. Oja, “Independent Component Analysis: Algorithms and Applications Neural Networks”, vol. 13, pp. 411-430, 2000.
[11].T. W. Lee, M. S. Lewicki and T. J. Sejnowski, “ICA mixture models for unsupervised classification of non-gaussian classes and automatic context switching in blind signal separation”, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, pp.1078-1089, 2000.
[12].Roy D. Yates and David J. Goodman, PROBILITY AND STOCHASTIC PROCESS, John Wiley & Sons, Inc., New York, 1999.
[13].生訊科技股份有限公司, http://www.bios ensetek.com/Cindex.html.
[14].12導心電圖機, ensetek.com/productECG.html.
[15].http://search.ni.com/nise arch/main/p?q=USB+6259.
[16].NI USB-6259, http://sine.ni.com/nips/cds/view/p/lang/en/nid/202598.
指導教授 李柏磊(Po-Lei Lee) 審核日期 2008-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明