博碩士論文 955202051 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:3.145.164.219
姓名 陳書品(Shu-Pin Chen)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 蛋白質於真核細胞中位置的預測
(Prediction of eukaryotic protein subcellular localization)
相關論文
★ 應用嵌入式系統於呼吸肌肉群訓練儀之系統開發★ 勃起障礙與缺血性心臟病的雙向研究: 以台灣全人口基礎的世代研究
★ 基質輔助雷射脫附飛行時間式串聯質譜儀 微生物抗藥性資料視覺化工具★ 使用穿戴式裝置分析心律變異及偵測心律不整之應用程式
★ 建立一個自動化分析系統用來分析任何兩種疾病之間的關聯性透過世代研究設計以及使用承保抽樣歸人檔★ 青光眼病患併發糖尿病,使用Metformin及Sulfonylurea治療得到中風之風險:以台灣人口為基礎的觀察性研究
★ 利用組成識別和序列及空間特性構成之預測系統來針對蛋白質交互作用上的特殊區段點位進行分析及預測辨識★ 新聞語意特徵擷取流程設計與股價變化關聯性分析
★ 藥物與疾病關聯性自動化分析平台設計與實作★ 建立財務報告自動分析系統進行股價預測
★ 建立一個分析疾病與癌症關聯性的自動化系統★ 基於慣性感測器虛擬鍵盤之設計與實作
★ 一個醫療照護監測系統之實作★ 應用手機開發手握球握力及相關資料之量測
★ 利用關聯分析全面性的搜索癌症關聯疾病★ 全面性尋找類風濕性關節炎之關聯疾病
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 預測不同的蛋白質會落在細胞中位置是一個重要而且研究相當完整的議題,細胞中每個位置各司其職,而合成好的蛋白質在不同的位質會完成他們本身的使命,蛋白質如果落在相同的位置,被認為是具有相同或是相似的功能,而了解蛋白質於細胞中的位置,是一個很重要的過程對於增進發現藥物的目標辨識。
目前已存在的方法,都建立於從蛋白質序列或是針對某片段的信號,缺乏更多的生物特性像是後轉譯修飾,而我們建立一個整合系統,能夠知道蛋白質會落在真核細胞中的位置,我們取用蛋白質序列的組成、某片段的信號、蛋白質的區塊和同源蛋白質的搜尋等來建構這個系統。
摘要(英) Prediction of subcellular localization of various proteins is an important and well-studied problem. Each compartment in cell has specific tasks, and proteins in each compartment are synthesized to fulfill these tasks. Proteins localized in the same compartment are thought to have the same or similar function. Knowledge of the subcellular localization of a protein can significantly improve target identification during the drug discovery process. Current available methods extract information from amino acid sequence or signal peptide and lack more biological features like post-translational modification. We develop an integrated system for biologists to know which localization the proteins from eukaryote is located to. The system is based on protein sequence composition, signal peptide, protein domains from Pfam and homologs search.
關鍵字(中) ★ 位置
★ 預測
★ 蛋白質
關鍵字(英) ★ subcellular localization
★ protein
★ siganl peptide
論文目次 Chapter 1 Introduction 1
1.1 Background 2
1.2 Motivation 5
1.3 Goal 5
Chapter 2 Related Works 6
2.1 Related tools 6
2.2 Related database 8
2.3 Recent tools of prediction of subcellular localization 10
2.4 Comparison of the prediction tools 14
Chapter 3 Materials and method 15
3.1 Data Source 15
3.2 Methods 18
Chapter 4 Results 26
4.1 Prediction performance of each individual model 26
4.2 Hybrid system 35
4.3 Comparison with other prediction tools 35
Chapter 5 Discussion 37
5.1 Discuss the prediction result 37
5.2 The relationship between features and localizations 38
Reference 41
參考文獻 1. Yu, C.S., et al., Prediction of protein subcellular localization. Proteins, 2006. 64(3): p. 643-651.
2. Pierleoni, A., et al., BaCelLo: a balanced subcellular localization predictor, in Bioinformatics. 2006.
3. Shatkay, H., et al., SherLoc: high-accuracy prediction of protein subcellular localization by integrating text and protein sequence data. Bioinformatics, 2007. 23(11): p. 1410.
4. Guda, C. and S. Subramaniam, TARGET: a new method for predicting protein subcellular localization in eukaryotes. Bioinformatics, 2005. 21(21): p. 3963-3969.
5. Nair, R. and B. Rost, LOCnet and LOCtarget: sub-cellular localization for structural genomics targets. Nucleic Acids Research.
6. Emanuelsson, O., et al., Predicting Subcellular Localization of Proteins Based on their N-terminal Amino Acid Sequence. Journal of Molecular Biology, 2000. 300(4): p. 1005-1016.
7. Roise, D., et al., Amphiphilicity is essential for mitochondrial presequence function. The EMBO Journal, 1988. 7(3): p. 649.
8. Becker, W.M., The world of the cell. 2000: Benjamin Cummings, San Francisco.
9. Chang, C.C. and C.J. Lin, LIBSVM: a library for support vector machines. Software available at http://www. csie. ntu. edu. tw/cjlin/libsvm, 2001. 80: p. 604–611.
10. Eddy, S.R., HMMER: Profile hidden Markov models for biological sequence analysis. Washington University School of Medicine, StLouis, MO (http://hmmer. wustl. edu/), 2000.
11. Altschul, S.F., et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research. 25(17): p. 3389-3402.
12. Li, Z.R., et al., PROFEAT: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence. Nucleic Acids Research, 2006. 34(Web Server issue): p. W32.
13. Kiemer, L., J.D. Bendtsen, and N. Blom, NetAcet: prediction of N-terminal acetylation sites. 2005, Oxford Univ Press. p. 1269-1270.
14. Gupta, R., E. Jung, and S. Brunak, Prediction of N-glycosylation sites in human proteins http://www. cbs. dtu. dk/services. 2002, NetNGlyc.
15. Hansen, J.E., et al., NetOglyc: Prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility. Glycoconjugate Journal, 1998. 15(2): p. 115-130.
16. Blom, N., S. Gammeltoft, and S. Brunak, Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. Journal of Molecular Biology, 1999. 294(5): p. 1351-1362.
17. Nair, R., P. Carter, and B. Rost, NLSdb: database of nuclear localization signals. Nucleic Acids Research, 2003. 31(1): p. 397-399.
18. Sigrist, C.J.A., et al., PROSITE: A documented database using patterns and profiles as motif descriptors. Briefings in Bioinformatics, 2002. 3(3): p. 265-274.
19. Bateman, A., et al., The Pfam Protein Families Database. Nucleic Acids Research, 2002. 30(1): p. 276-280.
20. Lee, T.Y., et al., dbPTM: an information repository of protein post-translational modification. Nucleic Acids Research.
21. Xie, D., et al., LOCSVMPSI: a web server for subcellular localization of eukaryotic proteins using SVM and profile of PSI-BLAST. Nucleic Acids Research.
22. Chang, J.M., et al., PSLDoc: Protein subcellular localization prediction based on gapped-dipeptides and probabilistic latent semantic analysis. Proteins, 2008.
23. Wen-Lin, H., et al., ProLoc-GO: Utilizing informative Gene Ontology terms for sequence-based prediction of protein subcellular localization. BMC Bioinformatics. 9.
24. Nair, R. and B. Rost, LOC3D: annotate sub-cellular localization for protein structures. Nucleic Acids Research, 2003. 31(13): p. 3337.
25. Park, K.J. and M. Kanehisa, Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs. 2003, Oxford Univ Press. p. 1656-1663.
26. Eddy, S.R., Profile hidden Markov models. Bioinformatics, 1998. 14(9): p. 755-763.
27. Cortes, C. and V. Vapnik, Support-vector networks. Machine Learning, 1995. 20(3): p. 273-297.
28. Jiawei Han, M.K., Data mining : concepts and techniques. 2 edition ed. 2006: Morgan Kaufmann.
29. Twyman, R.M., Principles of proteomics. 2004: BIOS Scientific Publishers, Abingdon, Oxon; New York.
30. McNabb, D.S. and R.J. Courtney, Posttranslational modification and subcellular localization of the p12 capsid protein of herpes simplex virus type 1. Journal of Virology, 1992. 66(8): p. 4839.
指導教授 洪炯宗(Jorng-Tzong Horng) 審核日期 2008-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明