博碩士論文 955202054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:2 、訪客IP:3.145.105.85
姓名 陳逸夫(Yi-fu Chen)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 環場鳥瞰監視停車輔助系統
(A Bird-view Surrounding Monitor System for Parking Assistance)
相關論文
★ 適用於大面積及場景轉換的視訊錯誤隱藏法★ 虛擬觸覺系統中的力回饋修正與展現
★ 多頻譜衛星影像融合與紅外線影像合成★ 腹腔鏡膽囊切除手術模擬系統
★ 飛行模擬系統中的動態載入式多重解析度地形模塑★ 以凌波為基礎的多重解析度地形模塑與貼圖
★ 多重解析度光流分析與深度計算★ 體積守恆的變形模塑應用於腹腔鏡手術模擬
★ 互動式多重解析度模型編輯技術★ 以小波轉換為基礎的多重解析度邊線追蹤技術(Wavelet-based multiresolution edge tracking for edge detection)
★ 基於二次式誤差及屬性準則的多重解析度模塑★ 以整數小波轉換及灰色理論為基礎的漸進式影像壓縮
★ 建立在動態載入多重解析度地形模塑的戰術模擬★ 以多階分割的空間關係做人臉偵測與特徵擷取
★ 以小波轉換為基礎的影像浮水印與壓縮★ 外觀守恆及視點相關的多重解析度模塑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 為了實現車輛週遭無視線死角的概念,我們提出一套車體環場鳥瞰監視系統。分別在車輛前後及兩側架設廣角相機,相機所拍攝影像經由轉換及組合成一個俯視車輛週遭環境的鳥瞰影像提供給駕駛者,藉以達到安全停車輔助的目的。
廣角相機提供較大的視野範圍,但也帶來嚴重的畫面扭曲問題。為了找出相機扭曲係數,我們利用投影成像原理建立扭曲係數的優劣評估準則。利用精確的扭曲係數將扭曲的原始影像還原成正確的透視投影影像。
整個系統的實做觀念是,我們假設在車輛上方有一個俯視車輛的虛擬相機,再將各扭曲校正後的影像轉換成虛擬相機所拍攝的影像。其過程可分為兩個步驟;首先原始影像點反投影至地平面,接著再從地平面投影至虛擬相機影像平面上。因為相機相對於車輛的位置固定,所以只需一次相機校正程序即可完成上述連續影像序列的轉換。
扭曲校正及鳥瞰轉換皆需利用相機內外部參數,我們使用一個基於平面校正板的相機校正技術。此相機校正技術只需一個參考平面,且允許任意變換相機的空間位置及指向,校正過程簡易且有彈性,取得的參數亦很精確。
最後我們利用一個簡單的統計分析技巧,將一影像的色彩特徵轉移至另一影像,讓四部相機所拍攝的影像能夠有比較一致的色彩。
我們用四部簡易型的相機架設在一部中古車上實現我們所提的“環場鳥瞰監視停車輔助系統”。由於設備不夠精良,在四部相機影像的對位上還有一些誤差。未來更新設備,可以讓我們的系統表現更完美。
摘要(英) To realize the concept of “No blind spot around the vehicle”, cameras are used to support the driver’’s visibility. We propose a system that employs four wide-angle cameras mounted in the front, rear, and both sides of a vehicle to capture images; images are then transformed and combined a bird-view image of the surrounding area of the vehicle to provide to the driver.
To generate a bird-view of the surrounding area, we define a virtual camera above the vehicle. The bird-view image is constructed in two steps. First, image pixels of the wide-angle cameras are back-projected to the ground plane. Second, the ground points are projected to the virtual camera.
The system is composed of four cameras with wide-angle lenses to get a wide field of view, but introducing a heavy distortion on images. To find the distortion parameter of a camera, we assume the basic property of the pinhole camera model: line segments in the 3-D space will always project as 2-D lines in the image plane. Concerning the problems of distortion removal and inverse perspective mapping with the knowledge of the intrinsic and extrinsic parameters of cameras have to be solved. A technique for camera calibration using a planar pattern is presented.
Finally, we use a simple statistical analysis method to impose one image’s color on another, which improves the quality of the results. In this thesis, we show how to transform and combine images from four wide-angle cameras to provide a bird-view of the surrounding area of a vehicle on a single display.
關鍵字(中) ★ 廣角校正
★ 視點轉換
★ 扭曲校正
★ 影像接合
★ 色彩校正
★ 影像拼接
★ 影像合成
關鍵字(英) ★ image mosaic
★ image stitching
★ color correction
★ image synthesis
★ distortion correction
★ viewpoint transformation
論文目次 摘要 II
誌謝 IV
目錄 V
第一章 緒論 一
第二章 相關研究 二
第三章 相機校正及扭曲校正 三
第四章 鳥瞰轉換及色彩調整 四
第五章 實驗 五
第六章 結論 六
英文版論文 七
參考文獻 [1] Bertozzi, M., A. Broggi, and A. Fascioli, “Vision-based intelligent vehicles: State of the art and perspectives,” Robotics and Autonomous Systems, vol.32, no.1, pp.1-16, 2000.
[2] Bertozzi, M., A. Broggi, M. Cellario, A. Fascioli, P. Lombardi, and M. Porta, “Artificial vision in road vehicles,” Proceedings of The IEEE, vol.90, no.7, pp.1258-1271, Jul. 2002.
[3] Bertozzi, M., A. Broggi, P. Medici, P. P. Porta, and A. Sjogren, “Stereo vision-based start-inhibit for heavy goods vehicles,” in Proc. of IEEE Intelligent Vehicles Symposium, Tokyo, Japan, Jun.13-15, 2006, pp.350-355.
[4] Brown, D. C., “Close-range camera calibration,” Photogrammetric Engineering, vol.37, no.8, pp.855-866, 1971.
[5] Caprile, B. and V. Torre, “Using vanishing points for camera calibration,” International Journal of Computer Vision, vol.4, no.2, pp.127-140, 1990.
[6] Claus, D. and A. W. Fitzgibbon, “A rational function lens distortion model for general cameras,” in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, San Diego, CA, Jun.20-25, 2005, vol.1, pp.213-219.
[7] Devernay, F. and O. Faugeras, “Straight lines have to be straight,” Machine Vision and Application, vol.13, no.1, pp.14-24, 2001.
[8] Ehlgen, T. and T. Pajdla, “Monitoring surrounding areas of truck-trailer combinations,” in Proc. of 5th Int. Conf. on Computer Vision Systems, Bielefeld, Germany, Mar.21-24, 2007, CD-ROM.
[9] Ehlgen, T. and T. Pajdla, “Maneuvering aid for large vehicle using omnidirectional cameras,” in Proc. of 8th IEEE Workshop on Applications of Computer Vision, Austin, Texas, 2007, pp.17.
[10] Ehlgen, T., M. Thorn, and M. Glaser, “Omnidirectional cameras as backing-up aid,” in Proc. of IEEE Int. Conf. on Computer Vision., Rio de Janeiro, Brazil, Oct.14-21, 2007, pp.1-5.
[11] Faig, W., “Calibration of close-range photogrammetry systems: Mathematical formulation,” Photogrammetric Engineering and Remote Sensing, vol.41, no.12, pp.1479-1486, 1975.
[12] Faugeras, O. and G. Toscani, “The calibration problem for stereo,” in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, Miami Beach, FL, Jun. 1986, pp.15-20.
[13] Faugeras, O., T. Luong, and S. Maybank, “Camera self-calibration: Theory and experiments,” in Proc. of 2nd European Conf. on Computer Vision, Santa Margherita Ligure, Italy, May. 1992, vol.588, pp.321-334.
[14] Fitzgibbon, A. W., “Simultaneous linear estimation of multiple view geometry and lens distortion,” in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, Kauai, Hawaii, Dec. 2001, vol.1, pp.125-132.
[15] Fleck, M. M., Perspective Projection: The Wrong Imaging Model, Technical Report TR 95-01, Computer Science, University of Iowa, 1995.
[16] Ganapathy, S., “Decomposition of transformation matrices for robot vision,” Pattern Recognition Letters, vol.2, pp.401-412, 1984.
[17] Gandhi, T. and M. M. Trivedi, “Dynamic panoramic surround map: motivation and omni video based approach,” in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, Washington DC, Jun.20-26, 2005, pp.61.
[18] Gandhi, T. and M. M. Trivedi, “Parametric ego-motion estimation for vehicle surround analysis using an omnidirectional camera,” Machine Vision and Applications, vol.16, no.2, pp.85-95, 2005.
[19] Gennery, D., “Stereo-camera calibration,” in Proc. of 10th Image Understanding Workshop, Los Angeles, CA, Nov. 1979, pp.101-108.
[20] Geyer, C. and K. Daniilidis, “Catadioptric projective geometry,” International Journal of Computer Vision, vol.45, no.3, pp.223-243, 2001.
[21] Liu, Y. C., K. Y. Lin, and Y. S. Chen, “Bird’s-eye view vision system for vehicle surrounding monitoring,” in Proc. Conf. Robot Vision, Berlin, Germany, Feb. 20, 2008, pp.207-218.
[22] Maybank, S. J. and O. D. Faugeras, “A theory of self-calibration of a moving camera,” International Journal of Computer Vision, vol.8, no.2, pp.123-152, 1992.
[23] Reinhard, E., M. Adhikhmin, B. Gooch, and P. Shirley, “Color transfer between images,” IEEE Computer Graphics and Applications, vol.21, no.5, pp.34-41, 2001.
[24] Ruderman, D. L., T. W. Cronin, and C. C. Chiao, “Statistics of cone responses to natural images: implications for visual coding,” Journal of the Optical Society of America A, vol.15, no.8, pp.2036-2045, 1998.
[25] Slama, C. C., editor., Manual of Photogrammetry, 4th edition, American Society of Photogrammetry and Remote Sensing, Falls Church, Virginia, 1980.
[26] Tsai, R. Y., “A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf tv cameras and lenses,” IEEE Journal of Robotics and Automation, vol.3, no.4, pp.323-344, 1987.
[27] Wei, G. and S. Ma, “A complete two-plane camera calibration method and experimental comparisons,” in Proc. of 4th Int. Conf. on Computer Vision, Berlin, Germany, May 11-14, 1993, pp.439-446.
[28] Weng, J., P. Cohen, and M. Herniou, “Camera calibration with distortion models and accuracy evaluation,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.14, no.10, pp.965-980, 1992.
[29] Zhang, Z., “A flexible new technique for camera calibration,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.22, no.11, pp.1330-1334, 2000.
[30] Zhang, Z., “Camera calibration with one-dimensional objects,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.26, no.7, pp.892-899, 2004.
指導教授 曾定章(Din-chang Tseng) 審核日期 2008-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明