摘要(英) |
Mobile communication has great progress in just a few years. People can access the internet by mobile; and the speed of internet can support high-definition video. Therefore, the user of mobile communication have Increased significantly. Surge of users, it will cause network congestion in areas of high population density, and then the connection is not easy. When the location of base station disposes at bad locations, the signal coverage is poor. Or an excessive number of base station constructions will result in increases in operating costs. This thesis will study in accordance with the above issues.
In my research, I found the particle swarm algorithm have the advantages, such as simple algorithms, fewer parameter settings, easy to optimize, fast convergence and fast search speed. So this thesis is applied for base station optimization, and considered population density factors to get the best coverage of base stations. This theory can be used in telecom operators in planning base station positions. |
參考文獻 |
[1] Holland, J., “Adaptation in Natural and Artificial Systems”, University of Michigan
Press, 1975.
[2] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller and E. Teller, “Equations of state calculations by fast computing machines”, Journal of Chemical Physics 21, 1953.
[3] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi , “Optimization by simulated annealing”, Science, vol. 220, 1983.
[4] A. Colorni, M. Dorigo, and V. Maniezzo, “Distributed optimization by ant colonies”, Proceedings of the 1st European Conference on Artificial Life, Paris, 1991.
[5] M. Dorigo and C. Blum, “Ant colony optimization theory: A survey”, Theoretical Computer Science, vol. 344, no. 2-3, Nov. 2005.
[6] Eberhart, R.C. and Kennedy, J. (1995). “A new optimizer using particle swarm theory”. Proc. Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan.
[7] J. Kennedy and R. C. Eberhart, “Particle swarm optimization”, in: Proc. IEEE Int. Conf. on Neural Networks, Perth, Australia, vol. 4, 1995.
[8] Antonio I. S. Nascimento, Carmelo J. A. Bastos Filho, "A Particle Swarm Optimization based approach for the maximum coverage problem in cellular base stations positioning", Hybrid Intelligent Systems (HIS), 10th , Aug, 2010.
[9] M. A. S. Choudhry, M. Zubair, and I. M. Qureshi, "MUD for WCDMA using modified PSO algorithm", Wireless Communications and Signal Processing (WCSP) ", Oct,2010.
[10] Y. Zhang, C. Ji, P. Yuan, M. Li, C. Wang, and G. Wang, "Particle swarm optimization for base station placement in mobile communication", Networking Sensing and Control, March 2004.
[11] 李世炳、鄒忠毅,“簡介導引模擬退火法及其應用”,物理雙月刊(廿四卷
二期),2002。
[12] 莊嶸騰,“應用基因演算法於GSM與W-CDMA系統的基地站台規劃”,國立台
北科技大學電腦通訊與控制研究所,碩士論文,2002。
[13] 沈威廷,“改良式粒子群演算法應用於WCDMA基站選址”,國立中央大學通
訊工程研究所,碩士論文,2011。
[14] 汪仁傑,“粒子群演算法應用於無線區域網路產品硬體開發規格選擇”,國立
中央大學通訊工程研究所,碩士論文,2012。
[15] 江吉雄,“遺傳演算法於股市選股與擇時策略之研究”,國立中央大學資訊管
理研究 所,碩士論文,2002。
[16] 黃翔瑞,“改良爬山演算法於護理排班程式設計”,中華大學生物資訊學系,
碩士論文,2011。
[17] 賴羿暹,“利用螞蟻演算法於桁架結構最佳化設計”,大同大學機械工程研究
所,碩士論文,2004。
[18] 范思源,“無線網絡規劃中基站選址的解決方案”,華南理工大學,碩士論文,
2006。
[19] 李維平(無日期),“粒子群最佳化演算法”,2012/12/11, 取自:
http://mcdm.ntcu.edu.tw/profchwu/course/dct_ai/教材/PSO美食規劃/pso.ppt
[20] “基因演算法簡介”,2013/01/02,取自:
http://www.me.sju.edu.tw/jimrong/FuzzyControl/B1/第9單元%20基因演算法簡介.pdf
[21] “模擬退火法”,義守大學資工所研究主題資料,2012/11/14,取自:
http://jjcommons.csie.isu.edu.tw/research/download/SA.pdf
[22] “粒子群聚演算法”, 義守大學資工所研究主題資料,2012/11/14,取自:
http://jjcommons.csie.isu.edu.tw/research/download/PSO.pdf
[23] “螞蟻最佳化演算法”, 義守大學資工所研究主題資料,2012/11/14,取自:
http://jjcommons.csie.isu.edu.tw/research/download/ACO.pdf
[24] 吳振鋒(無日期),“無線通訊的世代”,2013/03/08,取自:
http://web.ydu.edu.tw/~cfwu/htm/mobile/generations_for_mobile.ppt
[25] “CH11 電子商務與核心元件”, 2013/03/08,取自:
http://www.isu.edu.tw/upload/83202/12/files/dept_12_lv_3_16966.pdf
[26] 秦素霞(無日期),“ 行動通訊技術暨產業演進”,2013/03/08,取自:
http://nccur.lib.nccu.edu.tw/bitstream/140.119/34965/7/93251807.pdf
[27] “人工智慧”,2013/05/03,取自:
http://el.mdu.edu.tw/datacos//09920722019A/第四章%20有資訊搜尋.pdf |