博碩士論文 955403002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:18.218.76.193
姓名 傅國清(Kuo-Ching Fu)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 跳頻無線電系統之低複雜度盲蔽式頻率及轉換時間估測演算法
(Reduced Complexity Blind Frequency and Transition Time Estimation in Frequency Hopping Systems)
相關論文
★ 利用手持式手機工具優化行動網路系統於特殊型活動環境★ 穿戴裝置動態軌跡曲線演算法設計
★ 石英諧振器之電極面設計對振盪頻率擾動之溫度相依性研究★ 股票開盤價漲跌預測
★ 感知無線電異質網路下以不完美頻譜偵測進行資源配置之探討★ 大數量且有限天線之多輸入多輸出系統效能分析
★ 具有元學習分類權重轉移網路生成遮罩於少樣本圖像分割技術★ 具有注意力機制之隱式表示於影像重建 三維人體模型
★ 使用對抗式圖形神經網路之物件偵測張榮★ 基於弱監督式學習可變形模型之三維人臉重建
★ 以非監督式表徵分離學習之邊緣運算裝置低延遲樂曲中人聲轉換架構★ 基於序列至序列模型之 FMCW雷達估計人體姿勢
★ 基於多層次注意力機制之單目相機語意場景補全技術★ 應用於3GPP WCDMA-FDD上傳鏈路系統的遞迴最小平方波束合成犛耙式接收機
★ 調適性遠時程瑞雷衰退通道預測演算法設計與性能比較★ 智慧型天線之複合式到達方位-時間延遲估測演算法及Geo-location應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在跳頻轉換時間及頻率估測演算法中,最大相似演算法(Maximum Likelihood)中通常有較佳的估測效能,然而其缺點為計算複雜度較高。為了解決這個問題,一個基於兩個跳頻模型(Two-Hop Model)的疊代(Iteration)演算法被提出來用來降低計算複雜度[37],這個方法看起來很棒,並且得到一個不錯的結果,但由於其推導的方程式中包含了多個零點,並且由於其疊代方法需要設定初始值,如此可能造成錯誤估測至其它零點而產生收斂性問題。此外,一般跳頻頻率估測方法並未考慮到頻率轉換時間接近邊界(Boundary)的問題(即在兩個接收到的頻率中,一個頻率取樣個數較多,另一個頻率取樣個數較少的狀況),由於跳頻頻率及轉換時間對接收端來說為未知,因此若取樣的待估測資料區塊,其訊號轉換時間接近邊界,便產生了取樣個數不平衡(Unbalance)的狀況,在這種情境下,取樣個數較少的頻率估測效能將會嚴重下降。
在第一個方法中,我們提出訊號子空間架構運用在最大相似函數法則上,在不需要參考訊號的情況下,用來估測頻率及跳頻轉換時間。我們也討論了相關參數該如何選定。另外,我們利用資料區塊選擇演算法(Block Selection Algorithm)來解決了現存方法中取樣頻率訊號不平衡所造成誤差變大的問題。傳統搜尋式(Greedy Search)最大相似演算法相比,所提的方法大量降低了計算複雜度。並且在計算複雜度類似的情況下,與已知的疊代式最大相似演算法(Iterative ML-Based Algorithm)相比,估測效能很明顯有較好的表現。
在第二種方法當中,我們利用交互投影的概念(Alternative Projection),將多變數搜尋問題降低為單一變數搜尋問題,這種方法不需要同時搜尋時間及頻率等多個變數,因此大大降低了計算複雜度。同樣地,所提出的方法仍然考慮到頻率轉換時間接近邊界(Boundary)的問題,利用交互投影方法一次估測一個參數的特性,將不平衡的資料區塊調整至平衡的狀態,這樣作的好處是不管我們截收到的訊號是否處於平衡狀態,估測效能都能達到一致。相反地,傳統方法中只要是在不平衡的狀態下,則無法有效估測其中一個頻率及轉換時間。我們所提的方法可以進一步運用在追蹤上面,特別是前一區塊追蹤到的參數亦可以用於下一個區塊的估測當中,所以可以進一步降低計算複雜度。模擬結果也顯示,此方法的估測效能在平衡狀況下,與傳統最大相似貪婪搜索演算法方式效能相當,同時也與推導出的Cramer-Rao下限接近。而在不平衡的狀況下,我們所提的方法更能突顯出強健性
第三個方法使用疊代分解及結合演算法(Iterative Disassemble and Assemble, IDNA),所提方法與一般疊代演算法不同的是不需要設定初始值,因為不適當的初始值可能造成錯誤地收斂至局部最大值(Local Maximum)而非全域最大值,所提方法可以收斂至全域最大值(Global Maximum),這個方法是利用類似分治法(Divide And Conquer)的概念,將一個高階多項式函式分解成許多單項式函式,並且將這些單項式函式疊代計算,最後將這些結果結合而成。這個方法計算複雜度遠低於最大相似貪婪搜索演算法,並且能保持住一定的效能。除此之外,我們的方法可以進一步利用近似的方式來降低計算複雜度。
摘要(英) Frequency hopping spread spectrum (FHSS) is a technology for combating narrow band interference. Two important parameters required for estimation in FHSS are transition time and hopping frequency. We proposed three algorithms for estimating transition time and hopping frequency in FHSS.
In the first algorithm, blind subspace-based schemes with a maximum likelihood (ML) criterion for estimating frequency and transition time without using reference signals are proposed. The selection of the related parameters is discussed. Subspace-based algorithms are applied with the help of the proposed block selection scheme. The performance is improved with a block selection algorithm (BSA) to overcome the unbalanced processing block problems in various algorithms. The proposed method significantly reduces computational complexity compared with a greedy search ML-based algorithm. The performance is shown to outperform an existing iterative ML-based algorithm with a comparable complexity.
Another proposed algorithm uses the concept of the alternative projection algorithm, which reduces a multi variable search problem to a single variable search problem. The proposed algorithm does not require the simultaneous search of all times and frequencies. Therefore, the computation complexity is reduced tremendously. The scheme is robust in the sense that it can avoid the unbalanced sampling block problem that occurs in existing maximum likelihood-based schemes. The unbalanced sampling block problem would cause large errors in one of the estimates of frequency. The proposed scheme has a lower computational cost than the maximum likelihood-based greedy search method. The estimated parameters are also used for the subsequent time and frequency tracking.
The third proposed algorithm presents a blind scheme for estimating frequency and transition time in an iterative fashion: the iterative disassemble and assemble (IDNA) algorithm. The algorithm is developed on the basis of the “divide and conquer” approach. The proposed scheme disassembles a high order polynomial into several monomial functions. The solutions for the monomial functions are calculated iteratively, and are then assembled into a final estimation result. The proposed scheme does not require initial random guesses as with common iterative algorithms. Improper initial guesses may suffer from the problem of convergence to the local maximum. The proposed approach can converge to the global maximum in order to achieve the solution. The proposed scheme offers a much lower computational complexity than that of the maximum likelihood greedy search algorithm. Moreover, it also outperforms existing schemes with a comparable complexity. Moreover, an approximation version of the proposed scheme is derived and can be used to further reduce the computational complexity.
關鍵字(中) ★ 頻率估測
★ 同步
★ 跳頻
★ 展頻
★ 疊代
★ 分治法
★ 盲蔽式估測
★ 最大似然估測
關鍵字(英) ★ Frequency estimation
★ synchronization
★ frequency hopping
★ spread spectrum
★ iterative
★ blind estimation
★ maximum likelihood (ML)
論文目次 中 文 摘 要 ii
Abstract iv
致 謝 vi
List of Contents vii
List of Figures ix
List of Tables xi
List of Notations and Symbols xii
Chapter 1. Introduction 1
Chapter 2. Subspace-based Algorithms for Blind ML Frequency and Transition Time Estimation in Frequency Hopping Systems 6
2.1 Signal Model and Problem Formulation 6
2.2 Subspace-Based Schemes for Reduced Complexity ML-Based Estimation 9
2.2.1 ML-Based Exhaustive Search Methods with Frequency Scanning Vectors 10
2.2.2 Reduced Complexity Processing Schemes with Subspace-Based Estimation Algorithm 11
2.3 Proposed Block Selection Algorithm 13
2.4 Analysis of Computational Complexity 15
2.5 Simulation Results 18
2.5.1 Balanced-Block Scenario: 18
2.5.2 Unbalanced-Block Scenario with The Block Selection Algorithm: 21
Chapter 3. Robust Blind Frequency and Transition Time Estimation for Frequency Hopping Systems by Using Alternative Projection Algorithm 26
3.1 Proposed Estimation Algorithm Based on Maximum Likelihood Principle 27
3.1.1 Synchronization Phase 27
3.1.2 Robust Estimation in the Synchronization Phase 29
3.1.3 Tracking Phase 33
3.1.4 Algorithm Summary 34
3.2 Analysis of Computational Complexity 36
3.3 Simulations Results 38
Chapter 4. Blind Iterative ML-based Frequency and Transition Time Estimation for Frequency Hopping Systems 50
4.1 Proposed Iterative Disassemble and Assemble (IDNA) Algorithm 51
4.1.1 Analysis of the Nonlinear Objective Function 51
4.1.2 The Proposed IDNA Algorithm for Frequency Estimation 56
4.2 Reduced Computational Complexity for the Iterative Frequency Updating Scheme and an Approximation Method 61
4.3 Algorithm Summary 63
4.4 Analysis of Computational Complexities 65
4.5 Simulations Results 66
Chapter 5. Conclusion 77
References 79
Appendix 84
Appendix A. Derivation of Multiroots in (2.10) and (2.11) 84
Appendix B. Derivation of (2.13) 86
Appendix C. The Cramer Rao Lower Bound (CRLB) for the Balanced Block 87
參考文獻 [1]Specification of the Bluetooth Systems-Core. The Bluetooth Special Interest Group (SIG) [Online]. Available: http://www.bluetooth.com.
[2]F. Yang, L. Yang, H. Wei, and L. Sun, “Frequency-Hopping/M-ary Frequency-Shift Keying for Wireless Sensor Networks: Noncoherent Detection and Performance,” in Proceedings 7th International Symposium Wireless Communication Systems (ISWCS), York, 2010, pp. 135-139.
[3]Y. Wan, Q. Wang, S. Duan, and X. Zhang, “RAFH: Reliable Aware Frequency Hopping Method for Industrial Wireless Sensor Networks,” in Proceedings 5th International Conference Wireless Communications, Networking and Mobile Computing, Beijing , 2009, pp. 1-4.
[4]D. Willkomm, W. Hu, D. Hollos, J. Gross, and A. Wolisz, "On Centralized and Distributed Frequency Assignment in Cognitive Radio Based Frequency Hopping Cellular Networks," in Proceedings 3rd International Symposium Applied Sciences in Biomedical and Communication Technologies (ISABEL), Rome, 2010, pp. 1-5.
[5]S. Zhang, L. Yang, and Y. Zhang, "Fast Frequency-Hopping Dynamic Multiple-Access for Cognitive Radios: Suboptimum Noncoherent Maximum-Likelihood Multiuser Detection," in Proceedings 7th International Symposium Wireless Communication Systems (ISWCS), York, 2010, pp. 238-243.
[6] J. Chung and K. Yang, "Optimal Frequency-Hopping Sequences With New Parameters," IEEE Transactions on Information Theory, vol. 56, no. 4, pp. 1685-1693, April 2010.
[7]Y. Yang, X. Tang, U. Parampalli, and D. Peng, "New Bound on Frequency Hopping Sequence Sets and Its Optimal Constructions," IEEE Transactions on Information Theory, vol. 57, no. 11, pp. 7605-7613, November. 2011.
[8]Z. Zhou, X. Tang, D. Peng, and U. Parampalli, "New Constructions for Optimal Sets of Frequency-Hopping Sequences," IEEE Transactions on Information Theory, vol. 57, no. 6, pp. 3831-3840, June 2011.
[9]J. Chung and K. Yang, "k-Fold Cyclotomy and Its Application to Frequency-Hopping Sequences," IEEE Transactions on Information Theory, vol.57, no. 4, pp. 2306-2317, April 2011.
[10]Z. Zhou, X. Tang, X. Niu, and U. Parampalli, "New Classes of Frequency-Hopping Sequences With Optimal Partial Correlation," IEEE Transactions on Information Theory, vol. 58, no. 1, pp. 453-458, January 2012.
[11]J. Jung and J. Lim, "Chaotic Standard Map Based Frequency Hopping OFDMA for Low Probability of Intercept," IEEE Communications Letters, vol. 15, no. 9, pp. 1019-1021, September 2011.
[12]K. Pelechrinis, C. Koufogiannakis, and S. V. Krishnamurthy, "On the Efficacy of Frequency Hopping in Coping with Jamming Attacks in 802.11 Networks," IEEE Transactions on Wireless Communications, vol. 9, no. 10, pp. 3258-3271, October 2010.
[13]Y. Wu, B. Wang, K. J. R. Liu, and T. C. Clancy, "Anti-Jamming Games in Multi-Channel Cognitive Radio Networks," IEEE Journal on Selected Areas in Communications, vol. 30, no. 1, pp.4-15, January 2012.
[14]L. Xiao, H. Dai, and P. Ning, "Jamming-Resistant Collaborative Broadcast Using Uncoordinated Frequency Hopping," IEEE Transactions on Information Forensics and Security, vol. 7, no. 1, pp. 297-309, February 2012.
[15]Q. Wang, P. Xu, K. Ren, and X. Li, "Towards Optimal Adaptive UFH-Based Anti-Jamming Wireless Communication," IEEE Journal on Selected Areas in Communications, vol. 30, no. 1, pp.16-30, January 2012.
[16]H. Li and Z. Han, "Dogfight in Spectrum: Combating Primary User Emulation Attacks in Cognitive Radio Systems, Part I: Known Channel Statistics," IEEE Transactions on Wireless Communications, vol. 9, no. 11, pp. 3566-3577, November 2010.
[17]A. E. El-Mahdy, "Partial Band Jamming of Multicarrier Frequency Hopping/Binary Phase Shift Keying Receiver over a Rayleigh Fading Channel with Imperfect Channel Estimation," IET Communications, vol. 4, no. 3, pp. 285-294, February 2010.
[18]K.-J. Park, T. R. Park, C. D. Schmitz, and L. Sha, "Design of Robust Adaptive Frequency Hopping for Wireless Medical Telemetry Systems," IET Communications, vol. 4, no. 2, pp. 178-191, January 2010.
[19]Y. Han, J. Wen, D. Cabric, and J. D. Villasenor, "Probabilistic Estimation of the Number of Frequency-Hopping Transmitters," IEEE Transactions on Wireless Communications, vol. 10, no. 10, pp. 3232-3240, October 2011.
[20]D. Angelosante, G. B. Giannakis, and N. D. Sidiropoulos, "Estimating Multiple Frequency-Hopping Signal Parameters via Sparse Linear Regression," IEEE Transactions on Signal Processing, vol. 58, no. 10, pp. 5044-5056, October 2010.
[21]Y. Han, J. Wen, D. Cabric, and J. D. Villasenor, "Using a Vector of Observations to Identify the Number of Frequency-Hopping Transmitters," IEEE Communications Letters, vol. 15, no. 3, pp. 299-301, March 2011.
[22]H. Zhao and Q. Wang, “On Frequency Hop Synchronization in Multipath Rayleigh Fading” IEEE transactions on Vehicular Technology, vol. 47, no. 3, pp. 1049-1065, August 1998.
[23]J. Min and H. Samueli, “Synchronization Techniques for a Frequency Hopped Wireless Transceiver,” in Proceedings IEEE 46th Vehicular Technology Conference Mobile Technology for the Human Race, Atlanta, GA, 1996, pp. 183–187.
[24]Q. Yonghong and G. Zhongmin, “Research on Downlink Synchronization of a Frequency-Hopping Satellite Communication System,” in Proceedings IEEE International Conference Communication Technology, Beijing, 1998, pp. s17-05-1–s17-05-4.
[25]L. Weidong, W. Jing, and Y. Yan, “Synchronization Design of Frequency-Hopping Communication System,” in Proceedings IEEE International Conference Communication Technology, Beijing, 1998, pp. 115–119.
[26]F. Li, Z. Li, D. Lou and Y. Jiang, “Analysis and Research of Synchronization Technique for Frequency-Hopping Communication Systems,” in Proceedings International Conference Computer Science Network Technology (ICCSNT), Harbin, 2011, vol. 3, pp. 1968-1972.
[27]J. S. Min and H. Samueli, “Analysis and Design of a Frequency-Hopped Spread-Spectrum Transceiver for Wireless Personal Communications,” IEEE Transactions on Vehicular Technology, vol. 49, pp. 1719-1731, September 2000.
[28]Y. M. Siu, W. S. Chan, and S.W. Leung, “A SFH Spread Spectrum Synchronization Algorithm for Data Broadcasting,” IEEE Transactions on Broadcasting, vol. 47, pp. 71-75, March 2001.
[29]X. Dou, Y. Kuang, L. Jiao and F. Yang, “A Novel Parallel State Search Based Synchronization Scheme for Frequency Hopping System,” in Proceedings International Conference Computational Problem-Solving (ICCP), Leshan, 2012, pp. 418-422.
[30]M. Zhu, H. Ji, and R. Gao, “Parameter Estimation of Hybrid DS/FH Spread Spectrum Signals Using S Transform with an Asymmetrical Window, ” in Proceedings International Conference Communications Mobile Computing (CMC), Shenzhen, 2010, vol. 2, pp. 329-332.
[31]J. Liang, L. Gao, and S. Yang “Frequency Estimation and Synchronization of Frequency Hopping Signals Based on Reversible Jump MCMC,” in Proceedings International Symposium Intelligent Signal Processing and Communication Systems, Hong Kong, 2005, pp. 589-592.
[32]X. Liu, J. Li, and X. Ma, “An EM Algorithm for Blind Hop Timing Estimation of Multiple FH Signals Using an Array System with Bandwidth Mismatch,” IEEE Transactions on Vehicular Technology, vol. 56, no. 5, pp. 2545-2554 September, 2007.
[33] H. Fan, Y. Guo, and X. Feng, “Blind Parameter Estimation of Frequency Hopping Signals Based on Matching Pursuit,” in Proceedings 4th IEEE International Conference Wireless Communications, Networking and Mobile Computing, Dalian, 2008, pp. 1-5.
[34]S. G Mallat and Z. Zhang. “Matching Pursuit with Time-Frequency Dictionaries,” IEEE Transactions on Signal Processing, vol .41, no.12, pp. 3397-3415, December 1993.
[35]X. Liu, N. D. Sidiropoulos, and A. Swami, “Joint Hop Timing and Frequency Estimation for Collision Resolution in FH Networks,” IEEE Transactions on Wireless Communications, vol. 4, no. 6, pp. 3063-3074, November 2005.
[36]A. Valyrakis, E. E. Tsakonas, N. D. Sidiropoulos, and A. Swami, “Stochastic Modeling and Particle Filtering Algorithms for Tracking a Frequency-Hopped Signal,” IEEE Transactions on Signal Processing, vol. 57, no. 8, pp. 3108-3118, Aug. 2009.
[37]C. C. Ko, W. Zhi, and F. Chin, “ML-Based Frequency Estimation and Synchronization of Frequency Hopping Signals” IEEE Transactions on Signal Processing, vol. 53, no. 2, pp.403-410 Feb. 2005.
[38]N. Baba, “A Hybrid Algorithm for Finding a Global Minimum.’’ International Journal of Control vol. 37, no. 5, pp. 929-942, 1983.
[39]C. H. Slump and B. J. Hoenders, “The Determination of the Location of the Global Maximum of a Function in the Presence of Several Local Extrema,” IEEE Transactions on Information Theory, vol. IT-31, no. 4, pp. 490-497, July 1985.
[40]B. E. Stuckman, “A Global Search Method for Optimizing Nonlinear Systems,” IEEE Transactions on Systems, Man and Cybernetics, vol. 18, no. 6, pp. 965-977, November 1988.
[41]M. Y. Zou and X. Zou, “Global Optimization: An Auxiliary Cost Function Approach,” IEEE Transactions on Systems, Man, and Cybernetics—part A: Systems and Humans, vol. 30, no. 3, pp. 347-354, May 2000.
[42]D. Blatt and A. O. Hero, III, “On Tests for Global Maximum of the LogLikelihood Function,” IEEE Transactions on Information Theory, vol. 53, no. 7, pp.2510-2525, July 2007.
[43]K. C. Fu and Y. F. Chen, “Robust Blind Frequency and Transition Time Estimation for Frequency Hopping Systems” EURASIP Journal on Advances in Signal Processing, vol. 2010, Article ID 172703, 13 pages, 2010.
[44]M. J. D. Powell, Approximation Theory and Methods, Cambridge University Press, ISBN 978-0-521-29514-7, 1981.
[45]J. C. Mason and D. C. Handscomb, Chebyshev Polynomials, Chapman & Hall/CRC, Boca Raton, FL, 2nd edition, 2002.
[46]S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Upper Saddle River, NJ: Prentice-Hall, 1993.
[47]P. Huber, Robust Statistics. New York: Wiley, 1981.
[48]H. L. V. Trees, Detection, Estimation, and Modulation Theory. New York: Wiley, 2001.
[49]R. O. Schmidt, “Multiple Emitter Location and Signal Parameter Estimation,” IEEE Transactions on Antenna and Propagation, vol. AP-34, no. 3, MARCH 1986.
[50]R. Roy and T. Kailath, “ESPRIT-Estimation of Signal Parameters via Rotational Invariance Techniques,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 37, no. 7, pp. 984-994, July 1989.
[51]I. Ziskind, and M. Wax, “Maximum Likelihood Localization of Multiple Sources by Alternating Projection” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 36, no. 10, October 1988.
指導教授 陳永芳(Yung-Fang Chen) 審核日期 2013-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明