博碩士論文 962204006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:18.191.168.14
姓名 董詩珍(Si-Jin Dong)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 堆肥胞外蛋白體的分析與有用酵素之探索
(Analysis of the extracellular proteomes from composts and the discovery of useful enzymes)
相關論文
★ 陰離子界面活性劑sodium dodecylbenzene sulfonate分解菌篩選與脫磺酸酵素研究★ 鄰苯二酚加氧酵素的熱穩定性提昇研究
★ Triton X-100 分解菌之分離和分解酵素之特性研究★ Triton X-100加氧酵素之純化與定性
★ Lactobacillus reuteri於酸性與膽鹽環境中之蛋白質體研究★ 蕃茄根部受銅逆境之基因調控
★ Pseudomonas nitroreducens TX1 異化辛基苯酚聚氧乙基醇之功能性蛋白質體學:以二維電泳法分析等電點4-8之蛋白質表現★ Pseudomonas nitroreducens TX1之具耗氧活性之麩胺酸合成酶之單離
★ 人類細胞株生產含多種亞型的 干擾素-a之蛋白質體學研究★ 辛基苯酚之分解:分解菌和生物復育之菌相研究
★ 分解辛基苯酚聚氧乙基醇之耗氧酵素(二氫硫辛醯胺脫氫酶)的純化與定性★ AtNPR1轉殖番茄之性狀分析及抗病機制研究
★ Pseudomonas putida TX2分解辛基苯酚聚氧乙基醇及其具雌激素活性代謝物之研究★ 以功能性蛋白質體學研究Pseudomonas nitroreducens TX1生長於辛基苯酚聚氧乙基醇之代謝與逆境反應
★ 以功能性蛋白質體學研究Pseudomonas putida TX2生長於 辛基苯酚聚氧乙基醇與辛基苯酚之代謝與逆境反應★ 以功能性基因體學研究細菌異化辛基苯酚 聚氧乙基醇及抗逆境之基因
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 台灣每年產生300萬噸之農業廢棄物,包括稻穀、米糠、菇類太空包和椰纖等。堆肥過程中微生物將此類大型有機物農業廢棄物降解,而其過程能達60-80℃的高溫。其中能在如此高溫生長之嗜(耐)高溫微生物所分泌之各種酵素,在堆肥過程中扮演關鍵的角色,尤其是木質纖維水解酵素,此類耐高溫酵素,未來具應用於生質酒精生產之潛能。然而環境中之分泌性酵素,會與環境中的有機質如腐植質結合,使其穩定且不易受其他微生物降解。所以本試驗目標為建立堆肥之胞外蛋白質分析方法,即建立一套有效分析堆肥之胞外蛋白體之方法 (宏蛋白體學,metaproteomics)。對二種不同成份組成分之堆肥,進行堆肥胞外蛋白質之萃取,過程中利用不同物理和化學方法,將蛋白質和有機質分離。堆肥樣品首先經過離心及過濾將雜質與細胞去除,接著探討樣品中腐植質之去除效率、堆肥胞外蛋白質最適之緩衝溶液及蛋白質沈澱方法,再以一維和二維電泳將蛋白質體分離,分離後之蛋白質經胰蛋白酶消化後以電噴灑游離/四極柱飛行時間質譜儀(ESI-Q-Tof)鑑定其身分。試驗結果共鑑定到63個蛋白質,包括36個木質纖維水解酵素,其中10來自於實驗室中不可培養之菌種。結果證實以本實驗建立之堆肥胞外蛋白體分析方法,可探討堆肥於其酵素活性高點之胞外蛋白質體,且對於在試驗室中不可培養之菌種,也可以此宏蛋白體學的方法進行探討。其中從一星期之堆肥(30% 稻殼,10% 米糠,40%廢棄太空包和20%椰纖)中,以溶液消化時鑑定二個Laccase與到尚未有相關文獻報導之物種Spongipellis sp. FERM P-1817之laccase非常相近。Laccase可降解木質素,木質素之去除為生產生質酒精前處理之關鍵,有效之前處理可減低生產纖維酒精成本五至十倍,未來值得深入探討。本研究為第一個以宏蛋白體學的方法對堆肥中微生物蛋白質體進行研究,並能成功鑑定到其中之蛋白體及木質纖維水解酵素。
摘要(英) There are 300 million tons of agricultural wastes produced every year in Taiwan. The typical agricultural wastes in Taiwan are rice husk, rice bran, mushroom residua, coconut and bamboo fiber. The temperatures during the composting can reached 60-80°C. The enzymes released by microbes during composting play a key role in the biological and biochemical transformation of the organic matters. These enzymes usually are more stable and with higher activity than normal enzymes at high temperature. Cellulases, for example, secreted by microorganisms during high temperature composting play an important role in the biochemical transformation of cellulose. They are considered to be potential in applications on biofuel production. Although extracellular enzymes are important, these proteins are difficult to be isolated due to they are often associated with humic substances in the environmental samples. The focus of this study is on the methodology in order to improve the efficiency of the extracellular protein extraction from composts. A metaproteomics method was developed to investigate the presence of expressed enzymes at the peak temperature during composting. The mechanical and chemical treatments were applied on two composts which contain different composition of agricultural waste and manure. The extracelluar proteome was collected by centrifugation and filtration to remove the compost debris and microbial cells, respectively. The following steps included the humic substance removal, extracellular protein extraction, purification, and separation (by 1D and 2D-SDS-PAGE). Then, the proteome was digested by trypsin followed by analysis of the peptide sequences via ESI-MS/MS. sixty-three proteins, including thirty-six lignocellulytic enzymes, were identified from this study. The results provided the composition of proteins in the composts when the cellulase activity is at highest stage. Particularly, protein expressed from uncultivated microbes can be investigated. By this approach, two novel lignin-degrading enzymes, laccases, were identified from a two-week compost at 70°C (30% rice husk, 10% rice bran, 40% mushroom waste and 20% coconut fiber). They are highly likely from Spongipellis sp.. Our results represent the first metaproteomic study expressed protein profiles of natural microbial communities in compost environment.
關鍵字(中) ★ 木質纖維水解酵素
★ 不可培養微生物
★ 宏蛋白體學
★ 胞外蛋白體
★ 堆肥
關鍵字(英) ★ metaproteomics
★ lignocellulytic enzymes
★ humic substances
★ extracellular proteoms
★ composting
論文目次 目錄
中文摘要 Ⅰ
英文摘要 Ⅱ
壹、前言 1
一、文獻回顧 1
1. 堆肥 1
1.1.堆肥之主要原料 3
1.2. 堆肥中之微生物生態 3
1.3. 堆肥中具有應用價值之胞外酵素 4
1.3.1. 木質纖維素組成 5
1.3.2. 木質纖維水解酵素 6
2.宏蛋白體學 (Metaproteomics) 8
二、研究動機與目的 9
貳、材料與方法 11
一、堆肥來源 11
1.1 快速堆肥法 11
1.2 本實驗所採用之堆肥條件 11
二、堆肥中纖維素和半纖維素酵素活性測定 12
三、堆肥中之胞外蛋白質萃取 13
3.1.最適緩衝溶液測試 13
3.2 最適振盪頻率及時間之測試 13
3.3 最適超音波震盪時間測試 14
3.4 去除腐植酸方法 14
3.4.1 過濾 14
3.4.2 以Ultrafilitration方式去除堆肥胞外蛋白體中之去除腐植質 14
3.4.3 三氯乙酸蛋白質沉澱法去除腐植質 15
四、堆肥中之胞外蛋白質定量(Bradford Protein Assay) 15
五、堆肥中之胞外電泳分析 16
5.1 一維電泳分析 16
5.2 二維電泳分析 17
六、電泳膠體軟體分析 19
七、酵素活性染 19
八、膠體內消化(In-gel digestion) 19
九、溶液內消化(Gel-free digestion) 21
十、質譜儀分析與資料庫之搜尋 21
十一、實驗儀器與化學藥品 23
參、 結果 26
一、建立堆肥之胞外蛋白質方法之結果 26
二、從堆肥中萃取肥外蛋白質最適化條件 26
1. 最適之pH值 26
2. 最適振盪頻率及時間 26
3. 最適超音波震盪時間 27
4. 去除腐植質方法 27
4.1 過濾 27
4.2 以Ultrafilitration方式去除堆肥胞外蛋白體中之去除腐植質 27
4.3. 三氯乙酸蛋白質沉澱法去除腐植質 28
三、堆肥胞外蛋白質分離 28
四、蛋白質之鑑定 29
五、用用纖維素成份較高之堆肥組成份快速找尋具有木質纖維水解
酵素 30
1. 堆肥過程中纖維素和半纖維酵素之變化 30
2. 酵素活性染(Zymogram) 30
3.溶液消化Gel- free digestion 31
肆、討論 33
一、建立堆肥之胞外蛋白質方法 33
二、於纖維素成份較高之堆肥中找尋具有木質纖維水解酵素 36
五、 結論 38
陸、參考文獻 40
柒、圖 49
捌、表 75
圖 目 錄
圖一、木質纖維素之組成 49
圖二、半纖維素結構 50
圖三、木質素結構 51
圖四、纖維水解酵素之功能 52
圖五、半纖維水解相關酵素之分類與整理 53
圖六、堆肥中之胞外蛋白質研究步驟 54
圖七、快速堆肥化裝置之結構立體圖 55
圖八、由堆肥中萃取胞外蛋白之最適緩沖溶液酸鹼性測試流程圖 56
圖九、萃取堆肥之胞外蛋白質之最適振盪頻率和時間測試流程
圖 57
圖十、萃取堆肥之胞外蛋白質之最適超音波振盪時間測試流程圖 58
圖十一、膠內消化之流程圖 59
圖十二、未經去除腐植酸之堆肥胞外蛋白一維電泳圖譜 60
圖十三、萃取堆肥胞外蛋白質之最適酸鹼值 61
圖十四、萃取堆肥胞外蛋白質之最適超音波震盪時間 62
圖十五、堆肥之胞外蛋白質經去除腐植質後之一維電泳圖譜 63
圖十六、堆肥胞外蛋白質經去除腐植質後之二維電泳圖譜 64
圖十七、堆肥A 之胞外蛋白質經一維電泳分離後鑑定到之蛋白質 65
圖十八、快速堆肥B過程中溫度、蛋白質濃度及木質纖維水解酵素
活性之變化 69
圖十九、堆肥B之胞外蛋白質酵素活性染膠圖 70
圖二十、Spongipellis sp. FERM P-18171之Laccase親緣演化圖 71
圖二十一、環境中微生物分泌之酵素與有機質之結合 72
圖二十二、比較文獻從土壤和本實驗從堆肥中萃取胞外蛋白質之方法 73
圖二十三、比較文獻從土壤和本實驗從堆肥中萃取胞外蛋白質分離後之
結果 74
表 目 錄
表一、各種環境中於可被培養微生物之百分比 75
表二、前人應用不同非萃取和純化之方法證明堆肥中具有應用價值
之胞外酵素 76
表三、水解纖維之酵素 77
表四、漆氧化酶、含錳過氧化酶、木質素過氧化酶性質之比較 78
表五、比較從不同之環境中分析所有微生物之蛋白體方法 79
表六、較土壤與堆肥中之腐植質和可溶性之物質含量之差異 80
表七、以不同之振盪頻率(rpm),撘配不同之時間萃取堆肥之
胞外蛋白體濃度 81
表八、堆肥A之胞外蛋白質經一維電泳分離後之鑑定結果 82
表九、堆肥B之胞外蛋白質於酵素圖(Zymogram)之活性區域
鑑定到之與木質纖維素相關的酵素 86
表十、堆肥B之胞外蛋白質經溶液中消化鑑定所得之與木質纖維素
相關的酵素 87
參考文獻 陸、參考文獻
黃國青,( 1998 )。禽畜糞堆肥處理技術輔導手冊。台灣省畜牧廢棄資源再生利用協會編印。中華民國。p114-120。
周楚洋,(1998)。農業廢棄物處理之回顧與前瞻。高知武教授紀念研討會論文集。台灣大學農業機械工程學系,台北p121-130。
王啟浩、梁慈雯,(2000)。堆肥的製作與蝦蟹殼再利用。生物資源生物技術,2:34-37。
張政雄、陳顗竹、楊盛行,(2000)。基質種類、堆積時間及深度對溶磷菌相之影響。第五屆畜牧資源回收再利用研討會論文集。中華民國。p13-33。
鄭宏德、江國瑛、蔡永興、張耀民、黃傳安、洪怡芳、邱文琳、李佩玲,(2005)。農業廢棄物產出、再利用情形調查與管理制度建立計畫報告。環保署編。
蔡宜峰、陳俊位(2007)。生物性堆肥之菌種開發與應用生物性肥料與農藥。
生物性肥料與農藥。12: 35-41。
Abadulla, E., Tzanov, T., Costa, S., Robra, K.H., Cavaco-Paulo, A., Gubitz, G.M., 2000. Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Appl Environ Microbiol, 66, 3357-62.
Abram, F., Gunnigle, E., O'Flaherty, V., 2009. Optimisation of protein extraction and 2-DE for metaproteomics of microbial communities from anaerobic wastewater treatment biofilms. Electrophoresis, 30, 4149-51.
Amann, R.I., Ludwig, W., Schleifer, K.H., 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev, 59, 143-69.
Bakken, L.R., 1985. Separation and purification of bacteria from soil. Appl Environ Microbiol, 49, 1482-1487.
Beffa, T., Blanc, M., Lyon, P.F., Vogt, G., Marchiani, M., Fischer, J.L., Aragno, M., 1996. Isolation of Thermus strains from hot composts (60 to 80 degrees C). Appl Environ Microbiol, 62, 1723-7.
Beg, Q.K., Kapoor, M., Mahajan, L., Hoondal, G.S., 2001. Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol, 56, 326-38.
Beguin, P., Aubert, J.P., 1994. The biological degradation of cellulose. FEMS Microbiol Rev, 13, 25-58.
Beguin, P., Lemaire, M., 1996. The cellulosome: an exocellular, multiprotein complex specialized in cellulose degradation. Crit Rev Biochem Mol Biol, 31, 201-36.
Benndorf, D., Balcke, G.U., Harms, H., von Bergen, M., 2007. Functional metaproteome analysis of protein extracts from contaminated soil and groundwater. Isme J, 1, 224-34.
Bernal, M.P., Alburquerque, J.A., Moral, R., 2009. Composting of animal manures and chemical criteria for compost maturity assessment. Bioresour Technol, 100, 5444-53.
Bertrand, T., Jolivalt, C., Briozzo, P., Caminade, E., Joly, N., Madzak, C., Mougin, C., 2002. Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics. Biochem. 41, 7325-33.
Bisaria, V.S., and Ghose, T. K. , 1981. Biodegradation of cellulosic materials : substrates, microorganisms, enzymes and products. Enz Microb Technol, 3, 90-104.
Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72, 248-54.
Buranov, A.U., Mazza, G., 2008. Lignin in straw of herbaceous crops. Industrial Crops Products, 28, 237-259.
Busto, M.D., Perezmateos, M., 1995. Extraction of humic-beta-glucosidase fractions from soil. Biology Fertility of Soils, 20, 77-82.
Castaldi, P., Garau, G., Melis, P., 2008. Maturity assessment of compost from municipal solid waste through the study of enzyme activities and water-soluble fractions. Waste Manag, 28, 534-40.
Chambers, R.S., Broughton, M.J., Cannon, R.D., Carne, A., Emerson, G.W., Sullivan, P.A., 1993. An exo-beta-(1,3)-glucanase of Candida albicans: purification of the enzyme and molecular cloning of the gene. J Gen Microbiol, 139, 325-34.
Charest, M.H., Beauchamp, C.J., Antoun, H., 2005. Effects of the humic substances of de-inking paper sludge on the antagonism between two compost bacteria and Pythium ultimum. FEMS Microbiol Ecol, 52, 219-27.
Chen, Y., Sharma-Shivappa, R.R., Chen, C., 2007. Ensiling agricultural residues for bioethanol production. Appl Biochem Biotechnol, 143, 80-92.
Chiu-Chung Yong, P.D.R., A.B. Arun, 2005. what happen during composting. Food & Fertilizer Technology Center 1998-2009.
Dees, P.M., Ghiorse, W.C., 2001. Microbial diversity in hot synthetic compost as revealed by PCR-amplified rRNA sequences from cultivated isolates and extracted DNA. FEMS Microbiol Ecol, 35, 207-216.
Den Haan, R., Rose, S.H., Lynd, L.R., van Zyl, W.H., 2007. Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab Eng, 9, 87-94.
Dincer, S., Guvenmez, H., Colak, O., 2003. Mesophilic composting of food waste and bacterial pathogen reduction. Ann Microb, 53, 267-274.
Doi, R.H., Kosugi, A., 2004. Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat Rev Microbiol, 2, 541-51.
Emsley, J., 1977. Plant a tree for chemistry. New Scientist, 8.39
Ferguson, R.L., Buckley, E.N., Palumbo, A.V., 1984. Response of marine bacterioplankton to differential filtration and confinement. Appl Environ Microbiol, 47, 49-55.
Golueke, C.G., 1992. Bacteriology of composting. Biocycle, 33, 55-57.
Handelsman, J., 2004. Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev, 68, 669-85.
Head, I.M., Saunders, J.R., Pickup, R.W., 1998. Microbial evolution, diversity, and ecology: A decade of ribosomal RNA analysis of uncultivated microorganisms. Microb Ecol, 35, 1-21.
Hoving, S., Gerrits, B., Voshol, H., Muller, D., Roberts, R.C., van Oostrum, J., 2002. Preparative two-dimensional gel electrophoresis at alkaline pH using narrow range immobilized pH gradients. Proteomics, 2, 127-34.
Huber, R., Eder, W., Heldwein, S., Wanner, G., Huber, H., Rachel, R., Stetter, K.O., 1998. Thermocrinis ruber gen. nov., sp. nov., A pink-filament-forming hyperthermophilic bacterium isolated from yellowstone national park. Appl Environ Microbiol, 64, 3576-83.
Jacobsen, K.L., Jordan, C.F., 2009. Effects of restorative agroecosystems on soil characteristics and plant production on a degraded soil in the Georgia Piedmont, USA. Renewable Agriculture and Food Systems, 24, 186-196.
Jones, 1977. The effect of environmental factors on estimated viable and total populations of planktonic bacteria in lakes and experimental enclosures. Freshwater Biol. 7, 67 - 91
Jorgensen, H., Kristensen, J.B., Felby, C., 2007. Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioproducts & Biorefining, 1, 119-134.
Kan, J., Hanson, T.E., Ginter, J.M., Wang, K., Chen, F., 2005. Metaproteomic analysis of Chesapeake Bay microbial communities. Saline Systems, 1, 7.
Kocasoy, G., Guvener, Z., 2009. Efficiency of compost in the removal of heavy metals from the industrial wastewater. Environ Geol, 57, 291-296.
Kogure, K., Simidu, U., Taga, N., 1979. A tentative direct microscopic method for counting living marine bacteria. Can J Microbiol, 25, 415-20.
Kogure, K., Simidu, U., Taga, N., 1980. Distribution of viable marine bacteria in neritic seawater around Japan. Can J Microbiol, 26, 318-23.
Lacerda, C.M., Choe, L.H., Reardon, K.F., 2007. Metaproteomic analysis of a bacterial community response to cadmium exposure. J Proteome Res, 6, 1145-52.
Larsson, S., Cassland, P., Jonsson, L.J., 2001. Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Appl Environ Microbiol, 67, 1163-70.
Lawrence, H.M., Merivuori, H., Sands, J.A., Pidcock, K.A., 1986. Preliminary characterization of bacteriophages infecting the thermophilic actinomycete thermomonospora. Appl Environ Microbiol, 52, 631-636.
Lee, J., 1997. Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol, 56, 1-24.
Lee, S.B., Lee, C.H., Jung, K.Y., Do Park, K., Lee, D., Kim, P.J., 2009. Changes of soil organic carbon and its fractions in relation to soil physical properties in a long-term fertilized paddy. Soil Tillage Res, 104, 227-232.
Leonowicz, A., Cho, N.S., Luterek, J., Wilkolazka, A., Wojtas-Wasilewska, M., Matuszewska, A., Hofrichter, M., Wesenberg, D., Rogalski, J., 2001. Fungal laccase: properties and activity on lignin. Basic Microbiol, 41, 185-227.
Leonowicz A, C.N., Luterek J, Wilkolazka A, Wojtas-Wasilewska M, Matuszewska A,, Hofrichter M, W.D., Rogalski J, 2001. Fungal laccase: properties and activity on lignin. J Basic Microbiol 41, 185-227.
Lewis, N.G., Yamamoto, E., 1990. Lignin: occurrence, biogenesis and biodegradation. Ann Rev Plant Physiol Plant Mol Biol, 41, 455-96.
Liebler, D.C., 2002. Introduction to Proteomics-Tools for the New Bioloogy. Humana Press Inc, 3-8.
Lin, C.F., Huang, Y.J., Hao, I.J., 1999. Ultrafiltration processes for removing humic substances: Effect of molecular weight fractions and PAC treatment. Water Rese 33, 1252-1264.
Lynd, L.R., Weimer, P.J., van Zyl, W.H., Pretorius, I.S., 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev, 66, 506-77.
Lyon, P.F., Beffa, T., Blanc, M., Auling, G., Aragno, M., 2000. Isolation and characterization of highly thermophilic xylanolytic Thermus thermophilus strains from hot composts. Can J Microbiol, 46, 1029-35.
Mansfield, S.D., Mooney, C., Saddler, J.N., 1999. Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Prog, 15, 804-816.
Masciandaro, G., Ceccanti, B., Garcia, C., 1997. Soil agro-ecological management: Fertirrigation and vermicompost treatments. Bioresour Technol, 59, 199-206.
Miettinen-Oinonen, A., Paloheimo, M., Lantto, R., Suominen, P., 2005. Enhanced production of cellobiohydrolases in Trichoderma reesei and evaluation of the new preparations in biofinishing of cotton. J Biotechnol, 116, 305-17.
Miller, G.L., 1959. Use of dinitrosalicylic as reagent for the determination of reducing sugars. Anal Chem, 31, 426-428.
Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M., 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol, 96, 673-686.
Mougin, C., Boyer, F.D., Caminade, E., Rama, R., 2000. Cleavage of the diketonitrile derivative of the herbicide isoxaflutole by extracellular fungal oxidases. J Agric Food Chem, 48, 4529-34.
Murase, A., Yoneda, M., Ueno, R., Yonebayashi, K., 2003. Isolation of extracellular protein from greenhouse soil. Soil Biol & Biochem, 35, 733-736.
Nidetzky, B., Steiner, W., Hayn, M., Claeyssens, M., 1994. Cellulose hydrolysis by the cellulases from Trichoderma reesei: a new model for synergistic interaction. Biochem J, 298 Pt 3, 705-10.
Pace, N.R., 1997. A molecular view of microbial diversity and the biosphere. Science, 276, 734-40.
Record, E., Punt, P.J., Chamkha, M., Labat, M., van Den Hondel, C.A., Asther, M., 2002. Expression of the Pycnoporus cinnabarinus laccase gene in Aspergillus niger and characterization of the recombinant enzyme. Eur J Biochem, 269, 602-9.
Rees, H.C., Grant, S., Jones, B., Grant, W.D., Heaphy, S., 2003. Detecting cellulase and esterase enzyme activities encoded by novel genes present in environmental DNA libraries. Extremophiles, 7, 415-21.
Rothschild, L.J., Mancinelli, R.L., 2001. Life in extreme environments. Nature, 409, 1092-101.
Schmelz, K.G., Reipa, A., Rossol, D., 2007. Reduction of the quantity of sewage sludge and increase in the digester gas production. Destech Publications, Inc, pp. 191-202.
Schulze, W.X., Gleixner, G., Kaiser, K., Guggenberger, G., Mann, M., Schulze, E.D., 2005. A proteomic fingerprint of dissolved organic carbon and of soil particles. Oecologia, 142, 335-43.
Seligy, V.L., Barbier, J.R., Dimock, K.D., Dove, M.J., Moranelli, F., Morosoli, R., Willick, G.E., Yaguchi, M., 1984. Applications of recombinant DNA technology to the pulp and paper industry. Biotechnol Adv, 2, 201-16.
Shallom, D., Shoham, Y., 2003. Microbial hemicellulases. Curr Opin Microbiol, 6, 219-28.
Shevchenko, A., Wilm, M., Vorm, O., Mann, M., 1996. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem, 68, 850-858
Spiker, J.K., Crawford, D.L., Crawford, R.L., 1992. Influence of 2,4,6-trinitrotoluene (TNT) concentration on the degradation of TNT in explosive-contaminated soils by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol, 58, 3199-202.
Staley, J.T., Konopka, A., 1985. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol, 39, 321-46.
Stutzenberger, F.J., Kaufman, A.J., Lossin, R.D., 1970. Cellulolytic activity in municipal solid waste composting. Can J Microbiol, 16, 553-60.
Sun, R., Lawther, J.M., Banks, W.B., 1997. A tentative chemical structure of wheat straw lignin. Indus Crops Products, 6, 1-8.
Swatloski, R.P., Spear, S.K., Holbrey, J.D., Rogers, R.D., 2002. Dissolution of cellulose [correction of cellose] with ionic liquids. J Am Chem Soc, 124, 4974-5.
Thurman, Ε.M., 1989. Separation of humic substances and anionic surfactants from ground water by selective adsorption, J Am Chem Soc, 8, 107–114
Timell, T.E., 1964. Wood Hemicelluloses. I. Adv Carbohydr Chem, 19, 247-302.
Tiquia, S.M., 2002. Evolution of extracellular enzyme activities during manure composting. J Appl Microbiol, 92, 764-75.
Van Horn, H.H., Wilkie, A.C., Powers, W.J., Nordstedt, R.A., 1994. Components of dairy manure management systems. J Dairy Sci, 77, 2008-30.
Vieille, C., Burdette, D.S., Zeikus, J.G., 1996. Thermozymes. Biotechnol Annu Rev, 2, 1-83.
Vuorinen, A.H., 1999. Phosphatases in horse and chicken manure composts. Compost Science & Utilization, 7, 47-54.
Vuorinen, A.H., 2000. Effect of the bulking agent on acid and alkaline phosphomonoesterase and beta-D-glucosidase activities during manure composting. Bioresour Technol, 75, 133-138.
Wagner, M., Erhart, R., Manz, W., Amann, R., Lemmer, H., Wedi, D., Schleifer, K.H., 1994. Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge. Appl Environ Microbiol, 60, 792-800.
Wagner, M., R. .et al, 1993. Probing activated sludge with proteobacteria-specific oligonucleotides: inadequacy of culture-dependent methods for describing microbial community structure. Appl. Environ. Microbiol,59, 1520-152.
Wallenstein, M.D., Weintraub, M.N., 2008. Emerging tools for measuring and modeling the in situ activity of soil extracellular enzymes. Soil Biol Biochem, 40, 2098-2106.
Wang, J., Wang, X.C., 2006. Ultrafiltration with in-line coagulation for the removal of natural humic acid and membrane fouling mechanism. J Environ Sci (China), 18, 880-4.
Ward, D.M., Weller, R., Bateson, M.M., 1990. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature, 345, 63-5.
Weber, M.M.A.J., 1969. The Production of Cellulases. J Am Chem Soc, 95, 391–414.
Wesenberg, D., I. Kyriakides, and S. N. Agathos, 2003. White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol. Adv., 22, 161-187.
Wheals, A.E., Basso, L.C., Alves, D.M., Amorim, H.V., 1999. Fuel ethanol after 25 years. Trends Biotechnol, 17, 482-7.
Wilmes, P., Bond, P.L., 2004. The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environ Microbiol, 6, 911-20.
Wilmes, P., Bond, P.L., 2006. Metaproteomics: studying functional gene expression in microbial ecosystems. Trends Microbiol, 14, 92-7.
Wilmes, P., Wexler, M., Bond, P.L., 2008. Metaproteomics provides functional insight into activated sludge wastewater treatment. PLoS One, 3, e1778.
Wu, L., L.Q. Ma, and G.A. Martinez, 2000. Comparison of methods for evaluating stability and maturity of biosolid compost. J. Environ. Qual, 29, 424-429.
Wyman, C.E., Yang, B., 2009. Cellulosic biomass could meet California's transportation fuel needs. California Agriculture, 63, 185-190.
Yokoe, Y., Yasumasu, I., 1964. The Distribution of Cellulase in Invertebrates. Comp Biochem Physiol, 13, 323-38.
Yu, H., Zeng, G., Huang, H., Xi, X., Wang, R., Huang, D., Huang, G., Li, J., 2007. Microbial community succession and lignocellulose degradation during agricultural waste composting. Biodegradation, 18, 793-802.
Zeng, G.M., Yu, M., Chen, Y.N., Huang, D.L., Zhang, J.C., Huang, H.L., 2010. Jiang, R.Q., Yu, Z., Effects of inoculation with Phanerochaete chrysosporium at various time points on enzyme activities during agricultural waste composting. Bioresour Technol, 101, 222-227.
Zhang, Y.H., Lynd, L.R., 2004. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng, 88, 797-824.
指導教授 黃雪莉(Shir-Ly Huang) 審核日期 2010-2-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明