參考文獻 |
[1
] M. Mehrvar, C. Bis, J. M. Scharer, M. Moo-Young, and J. H. Luong, "Fiber-optic biosensors - Trends and advances," Analytical Sciences 16, 677-692 (2000).
[2
] B. Mizaikoff, R. Gobel, R. Krska, K. Taga, R. Kellner, M. Tacke, and A. Katzir, "Infrared Fiberoptic Chemical Sensors with Reactive Surface-Coatings," Sensors and Actuators B-Chemical 29, 58-63 (1995).
[3
] M. Belz, W. J. O. Boyle, K. F. Klein, and K. T. V. Grattan, "Smart-sensor approach for a fibre-optic-based residual chlorine monitor," Sensors and Actuators B-Chemical 39, 380-385 (1997).
[4]
J. H. Lee, K. H. Yoon, K. S. Hwang, J. Park, S. Ahn, and T. S. Kim, "Label free novel electrical detection using micromachined PZT monolithic thin film cantilever for the detection of C-reactive protein," Biosensors & Bioelectronics 20, 269-275 (2004).
[5]
Y. S. Lee, D. S. Yoon, and T. S. Kim, "Improvement of the mass sensitivity in flexural plate wave biosensor based on PZT thin film," Integrated Ferroelectrics 69, 391- (2005).
[6]
G. Y. Kang, G. Y. Han, J. Y. Kang, I. H. Cho, H. H. Park, S. H. Paek, and T. S. Kim, "Label-free protein assay with site-directly immobilized antibody using self-actuating PZT cantilever," Sensors and Actuators B-Chemical 117, 332-338 (2006).
[7]
F. Sevilla, T. Kullick, and T. Scheper, "A Bio-Fet Sensor for Lactose Based on Co-Immobilized Beta-Galactosidase Glucose-Dehydrogenase," Biosensors & Bioelectronics 9, 275-281 (1994).
[8]
A. N. Reshetilov, M. V. Donova, D. V. Dovbnya, A. M. Boronin, T. D. Leathers, and R. V. Greene, "FET-microbial sensor for xylose detection based on Gluconobacter oxydans cells," Biosensors & Bioelectronics 11, 401-408 (1996).
[9]
A. Vijayalakshmi, Y. Tarunashree, B. Baruwati, S. V. Manorama, B. L. Narayana, R. E. C. Johnson, and N. M. Rao, "Enzyme field effect transistor (ENFET) for estimation of triglycerides using magnetic nanoparticles," Biosensors & Bioelectronics 23, 1708-1714 (2008).
[10
] J. Kondoh, and S. Shiokawa, "Measurements of Conductivity and Ph of Liquid Using Surface Acoustic-Wave Devices," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 31, 82-84 (1992).
[11
] K. Lange, F. Bender, A. Voigt, H. Gao, and M. Rapp, "A surface acoustic wave biosensor concept with low flow cell volumes for label-free detection," Analytical Chemistry 75, 5561-5566 (2003).
[12
] M. Perpeet, S. Glass, T. Gronewold, A. Kiwitz, A. Malave, I. Stoyanov, M. Tewes, and E. Quandt, "SAW sensor system for marker-free molecular interaction analysis," Analytical Letters 39, 1747-1757 (2006).
[13
] B. J. Jeon, and J. C. Pyun, "Reconstruction of the Immunoaffinity Layer of SPR Biosensor by Using Proteolytic Enzyme," Biochip Journal 2, 269-273 (2008).
[14]
M. Bora, K. Celebi, J. Zuniga, C. Watson, K. M. Milaninia, and M. A. Baldo, "Near field detector for integrated surface plasmon resonance biosensor applications," Optics Express 17, 329-336 (2009).
[15]
L. G. Carrascosa, A. Calle, and L. M. Lechuga, "Label-free detection of DNA mutations by SPR: application to the early detection of inherited breast cancer," Analytical and Bioanalytical Chemistry 393, 1173-1182 (2009).
[16]
W. Jin, X. C. Lin, S. W. Lv, Y. Zhang, Q. H. Jin, and Y. Mu, "A DNA sensor based on surface plasmon resonance for apoptosis-associated genes detection," Biosensors & Bioelectronics 24, 1266-1269 (2009).
[17]
H. W. Huang, C. R. Tang, Y. L. Zeng, X. Y. Yu, B. Liao, X. D. Xia, P. G. Yi, and P. K. Chu, "Label-free optical biosensor based on localized surface plasmon resonance of immobilized gold nanorods," Colloids and Surfaces B-Biointerfaces 71, 96-101 (2009).
[18]
R. Guntupalli, I. Sorokulova, A. Krumnow, O. Pustovyy, E. Olsen, and V. Vodyanoy, "Real-time optical detection of methicillin-resistant Staphylococcus aureus using lytic phage probes," Biosensors & Bioelectronics 24, 151-154 (2008).
[19]
M. Curreli, R. Zhang, F. N. Ishikawa, H. K. Chang, R. J. Cote, C. Zhou, and M. E. Thompson, "Real-Time, Label-Free Detection of Biological Entities Using Nanowire-Based FETs," Ieee Transactions on Nanotechnology 7, 651-667 (2008).
[20]
M. M. Orosco, C. Pacholski, and M. J. Sailor, "Real-time monitoring of enzyme activity in a mesoporous silicon double layer," Nature Nanotechnology 4, 255-258 (2009).
[21]
C. Poitras, J. Fatisson, and N. Tufenkji, "Real-time microgravimetric quantification of Cryptosporidium parvum in the presence of potential interferents," Water Research 43, 2631-2638 (2009).
[22]
R. Z. Hao, D. B. Wang, X. E. Zhang, G. M. Zuo, H. P. Wei, R. F. Yang, Z. P. Zhang, Z. X. Cheng, Y. C. Guo, Z. Q. Cui, and Y. F. Zhou, "Rapid detection of Bacillus anthracis using monoclonal antibody functionalized QCM sensor," Biosensors & Bioelectronics 24, 1330-1335 (2009).
[23]
W. G. Miller, and F. P. Anderson, "Antibody Properties for Chemically Reversible Biosensor Applications," Analytica Chimica Acta 227, 135-143 (1989).
[24]
J. P. Alarie, and T. VoDinh, "Antibody-based submicron biosensor for benzo[a]pyrene DNA adduct," Polycyclic Aromatic Compounds 8, 45-52 (1996).
[25]
A. J. Killard, M. R. Smyth, K. Grennan, L. Micheli, and G. Palleschi, "Rapid antibody biosensor assays for environmental analysis," Biochemical Society Transactions 28, 81-84 (2000).
[26]
K. Nakano, T. Anshita, M. Nakayama, H. Irie, Y. Katayama, and M. Maeda, "DNA biosensor: Immunosensor applications for Anti-DNA antibody," Microfabricated Sensors 815, 71-83 (2002).
[27]
P. J. Conroy, S. Hearty, P. Leonard, and R. J. O'Kennedy, "Antibody production, design and use for biosensor-based applications," Seminars in Cell & Developmental Biology 20, 10-26 (2009).
[28]
S. Ichikawa, S. Toyama, and Y. Ikariyama, "Development and characterization of surface plasmon resonance (SPR)-based immunosensor," Nippon Kagaku Kaishi, 318-322 (1997).
[29]
E. E. Ferapontova, and K. V. Gothelf, "Effect of Serum on an RNA Aptamer-Based Electrochemical Sensor for Theophylline," Langmuir 25, 4279-4283 (2009).
[30]
C. C. Huang, and H. T. Chang, "Aptamer-based fluorescence sensor for rapid detection of potassium ions in urine," Chemical Communications, 1461-1463 (2008).
[31]
Y. Xiao, A. A. Lubin, A. J. Heeger, and K. W. Plaxco, "Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor," Angewandte Chemie-International Edition 44, 5456-5459 (2005).
[32]
Y. Li, H. J. Lee, and R. M. Corn, "Fabrication and characterization of RNA aptamer microarrays for the study of protein-aptamer interactions with SPR imaging," Nucleic Acids Research 34, 6416-6424 (2006).
[33]
C. Y. Yao, Y. Z. Qi, Y. H. Zhao, Y. Xiang, Q. H. Chen, and W. L. Fu, "Aptamer-based piezoelectric quartz crystal microbalance biosensor array for the quantification of IgE," Biosensors & Bioelectronics 24, 2499-2503 (2009).
[34]
M. Mir, M. Vreeke, and L. Katakis, "Different strategies to develop an electrochemical thrombin aptasensor," Electrochemistry Communications 8, 505-511 (2006).
[35]
K. Ikebukuro, C. Kiyohara, and K. Sode, "Novel electrochemical sensor system for protein using the aptamers in sandwich manner," Biosensors & Bioelectronics 20, 2168-2172 (2005).
[36]
K. Ikebukuro, C. Kiyohara, and K. Sode, "Electrochemical detection of protein using a double aptamer sandwich," Analytical Letters 37, 2901-2909 (2004).
[37]
Y. Xiao, A. A. Lubin, A. J. Heeger, and K. W. Plaxco, "Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor," Angewandte Chemie-International Edition 44, 5456-5459 (2005).
[38]
J. H. So, H. J. Kim, H. Kang, H. Park, S. Ryu, S. W. Jung, S. Doh, S. Kim, and K. Kim, "Development of liquid scintillator system for proton flux monitoring," Journal of the Korean Physical Society 50, 1506-1509 (2007).
[39]
K. Maehashi, T. Katsura, K. Kerman, Y. Takamura, K. Matsumoto, and E. Tamiya, "Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors," Analytical Chemistry 79, 782-787 (2007).
[40]
R. J. Green, J. Davies, M. C. Davies, C. J. Roberts, and S. J. B. Tendler, "Surface plasmon resonance for real time in situ analysis of protein adsorption to polymer surfaces," Biomaterials 18, 405-413 (1997).
[41]
T. J. Wang, C. W. Tu, F. K. Liu, and H. L. Chen, "Surface plasmon resonance waveguide biosensor by bipolarization wavelength interrogation," Ieee Photonics Technology Letters 16, 1715-1717 (2004).
[42]
A. Kausaite, A. Ramanaviciene, V. Mostovojus, and A. Ramanavicius, "Surface plasmon resonance and its application to biomedical research," Medicina-Lithuania 43, 355-365 (2007).
[43]
J. H. Kim, H. Y. Yang, and H. Y. Lee, "Fabrication of Mach-Zehnder Interferometor Based on Planar Waveguide for the Application of Biosensors," International Journal of Modern Physics B 23, 1891-1896 (2009).
[44]
J. Hong, D. Yoon, and T. S. Kim, "The Mach-Zehnder Interferometer Based on Silicon Oxides for Label Free Detection of C-reactive Protein (CRP)," Biochip Journal 3, 1-11 (2009).
[45]
X. D. Fan, I. M. White, S. I. Shopoua, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, "Sensitive optical biosensors for unlabeled targets: A review," Analytica Chimica Acta 620, 8-26 (2008).
[46]
J. Hong, J. S. Choi, G. Han, J. K. Kang, C. M. Kim, T. S. Kim, and D. S. Yoon, "A Mach-Zehnder interferometer based on silicon oxides for biosensor applications," Analytica Chimica Acta 573, 97-103 (2006).
[47]
H. Mukundan, J. Z. Kubicek, A. Holt, J. E. Shively, J. S. Martinez, K. Grace, W. K. Grace, and B. I. Swanson, "Planar optical waveguide-based biosensor for the quantitative detection of tumor markers," Sensors and Actuators B-Chemical 138, 453-460 (2009).
[48]
D. S. Bagal, A. Vijayan, R. C. Aiyer, R. N. Karekar, and M. S. Karve, "Fabrication of sucrose biosensor based on single mode planar optical waveguide using co-immobilized plant invertase and GOD," Biosensors & Bioelectronics 22, 3072-3079 (2007).
[49]
A. V. Dotsenko, A. L. Diikov, and T. A. Vartanyan, "Label-free biosensor using an optical waveguide with induced Bragg grating of variable strength," Sensors and Actuators B-Chemical 94, 116-121 (2003).
[50]
D. L. Wang, N. Jiang, L. Q. Jiang, Z. L. Zhang, and X. Y. Pu, "The Precise Assignment of Whispering Gallery Modes for Lasing Spectra Emitting from Cylindrical Micro-Cavities," Spectroscopy and Spectral Analysis 28, 2749-2753 (2008).
[51]
Y. M. Wang, K. L. Cooper, and A. B. Wang, "Microgap Structured Optical Sensor for Fast Label-Free DNA Detection," Journal of Lightwave Technology 26, 3181-3185 (2008).
[52]
K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, "Silicon-on-Insulator microring resonator for sensitive and label-free biosensing," Optics Express 15, 7610-7615 (2007).
[53]
A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, and M. S. Unlu, "Optical sensing of biomolecules using microring resonators," Ieee Journal of Selected Topics in Quantum Electronics 12, 148-155 (2006).
[54]
I. D. Block, M. Pineda, C. J. Choi, and B. T. Cunningham, "High Sensitivity Plastic-Substrate Photonic Crystal Biosensor," Ieee Sensors Journal 8, 1546-1547 (2008).
[55]
L. L. Chan, S. L. Gosangari, K. L. Watkin, and B. T. Cunningham, "A label-free photonic crystal biosensor imaging method for detection of cancer cell cytotoxicity and proliferation," Apoptosis 12, 1061-1068 (2007).
[56]
I. D. Block, L. L. Chan, and B. T. Cunningham, "Photonic crystal optical biosensor incorporating structured low-index porous dielectric," Sensors and Actuators B-Chemical 120, 187-193 (2006).
[57]
L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Hoiby, and O. Bang, "Photonic crystal fiber long-period gratings for biochemical sensing," Optics Express 14, 8224-8231 (2006).
[58]
I. Karamollaoglu, H. A. Oktem, and M. Mutlu, "QCM-based DNA biosensor for detection of genetically modified organisms (GMOs)," Biochemical Engineering Journal 44, 142-150 (2009).
[59]
S. R. Hong, S. J. Choi, H. Do Jeong, and S. Hong, "Development of QCM biosensor to detect a marine derived pathogenic bacteria Edwardsiella tarda using a novel immobilisation method," Biosensors & Bioelectronics 24, 1635-1640 (2009).
[60]
F. J. He, X. Y. Cui, and J. L. Ren, "A Novel QCM-based Biosensor for Detection of Microorganisms Producing Hydrogen Sulfide," Analytical Letters 41, 2697-2709 (2008).
[61]
A. Sharon, D. Rosenblatt, and A. A. Friesem, "Resonant grating waveguide structures for visible and near-infrared radiation," Journal of the Optical Society of America a-Optics Image Science and Vision 14, 2985-2993 (1997).
[62]
B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, "A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions," Sensors and Actuators B-Chemical 85, 219-226 (2002).
[63]
P. Y. Li, L. Bo, J. Gerstenmaier, and B. T. Cunningham, "A new method for label-free imaging of biomolecular interactions," Sensors and Actuators B-Chemical 99, 6-13 (2004).
[64]
N. Ganesh, I. D. Block, and B. T. Cunningham, "Near ultraviolet-wavelength photonic-crystal biosensor with enhanced surface-to-bulk sensitivity ratio," Applied Physics Letters 89, - (2006).
[65]
B. Cunningham, J. Qiu, P. Li, and B. Lin, "Enhancing the surface sensitivity of colorimetric resonant optical biosensors," Sensors and Actuators B-Chemical 87, 365-370 (2002).
[66]
I. D. Block, L. L. Chan, and B. T. Cunningham, "Large-area submicron replica molding of porous low-k dielectric films and application to photonic crystal biosensor fabrication," Microelectronic Engineering 84, 603-608 (2007).
[67]
I. D. Block, L. L. Chan, and B. T. Cunningham, "Photonic crystal optical biosensor incorporating structured low-index porous dielectric," Sensors and Actuators B-Chemical 120, 187-193 (2006).
[68]
C. J. Choi, and B. T. Cunningham, "A 96-well microplate incorporating a replica molded microfluidic network integrated with photonic crystal biosensors for high throughput kinetic biomolecular interaction analysis," Lab on a Chip 7, 550-556 (2007).
[69]
L. L. Chan, S. L. Gosangari, K. L. Watkin, and B. T. Cunningham, "A label-free photonic crystal biosensor imaging method for detection of cancer cell cytotoxicity and proliferation," Apoptosis 12, 1061-1068 (2007).
[70]
I. Abdulhalim, "BIOSENSING CONFIGURATIONS USING GUIDED WAVE RESONANT STRUCTURES," Optical Waveguide Sensing and Imaging Chap. 9, 211 (2008).
[71]
D. L. Robertson, and G. F. Joyce, "Selection Invitro of an Rna Enzyme That Specifically Cleaves Single-Stranded-DNA," Nature 344, 467-468 (1990).
[72]
C. Tuerk, and L. Gold, "Systematic Evolution of Ligands by Exponential Enrichment - Rna Ligands to Bacteriophage-T4 DNA-Polymerase," Science 249, 505-510 (1990).
[73]
J. M. Burke, and A. Berzalherranz, "Invitro Selection and Evolution of Rna - Applications for Catalytic Rna, Molecular Recognition, and Drug Discovery," Faseb Journal 7, 106-112 (1993).
[74]
S. P. Song, L. H. Wang, J. Li, J. L. Zhao, and C. H. Fan, "Aptamer-based biosensors," Trac-Trends in Analytical Chemistry 27, 108-117 (2008).
[75]
A. Geiger, P. Burgstaller, H. vonderEltz, A. Roeder, and M. Famulok, "RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity," Nucleic Acids Research 24, 1029-1036 (1996).
[76]
R. D. Jenison, S. C. Gill, A. Pardi, and B. Polisky, "High-Resolution Molecular Discrimination by Rna," Science 263, 1425-1429 (1994).
[77]
S. D. Mendonsa, and M. T. Bowser, "In vitro selection of high-affinity DNA ligands for human IgE using capillary electrophoresis," Analytical Chemistry 76, 5387-5392 (2004).
[78]
B. A. Brown, "Hematology : Principles and Procedures," Philadelphia lea & Febiger (1993).
[79]
J. A. Huntington, "Molecular recognition mechanisms of thrombin," Journal of Thrombosis and Haemostasis 3, 1861-1872 (2005).
[80]
L. C. Bock, L. C. Griffin, J. A. Latham, E. H. Vermaas, and J. J. Toole, "Selection of Single-Stranded-DNA Molecules That Bind and Inhibit Human Thrombin," Nature 355, 564-566 (1992).
[81]
Q. Y. Wu, M. Tsiang, and J. E. Sadler, "Localization of the Single-Stranded-DNA Binding-Site in the Thrombin Anion-Binding Exosite," Journal of Biological Chemistry 267, 24408-24412 (1992). [82]
W. X. Li, A. V. Kaplan, G. W. Grant, J. J. Toole, and L. L. K. Leung, "A Novel Nucleotide-Based Thrombin Inhibitor Inhibits Clot-Bound Thrombin and Reduces Arterial Platelet Thrombus Formation," Blood 83, 677-682 (1994).
[83]
E. Heyduk, and T. Heyduk, "Nucleic acid-based fluorescence sensors for detecting proteins," Analytical Chemistry 77, 1147-1156 (2005).
[84]
M. G. M. a. T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. So. Am 71, 811-818 (1981).
[85]
S. C. D. Gilbert S. D., Wise S. J., and Batey R. T., "Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain," J. Mol. Biol. 359, 754-768 (2006).
[86]
B. J. Noeske J., Furtig B., Nasiri H. R., Schwalbe H., and Wohnert J., "Interplay of 'induced fit' and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch," Nucleic Acids Research 35, 572-583 (2007).
[87]
W. J. E. Muller M., Weichenrieder O., and Suess B., "Thermodynamic characterization of an engineered tetracycline-binding riboswitch," Nucleic Acids Research 34, 2607-2617 (2006).
|