博碩士論文 962211004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.118.184.36
姓名 劉婷婷(Ting-ting Liu)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 以蛋白質體學研究高溫古生菌Sulfolobus acidocaldarius DSM 639之胞外蛋白體
(Proteomic analysis of the exoproteome of the thermophilic archaeon Sulfolobus acidocaldarius DSM 639)
相關論文
★ Pseudomonas putida TX2中辛基苯酚聚氧乙基醇類脫氫酶之初步純化與特性研究★ 以電泳膠體分離及質譜儀鑑定紅斑性狼瘡(活躍期)血漿中表現差異的蛋白質
★ Acinetobacter sp. OP5 與 Pseudomonas sp. TX1 參與辛基酚分解之基因群與OP5菌株之烷基鄰苯二酚2, 3加氧酵素★ 陰離子界面活性劑sodium dodecylbenzene sulfonate分解菌篩選與脫磺酸酵素研究
★ 鄰苯二酚加氧酵素的熱穩定性提昇研究★ Triton X-100 分解菌之分離和分解酵素之特性研究
★ Triton X-100加氧酵素之純化與定性★ Lactobacillus reuteri於酸性與膽鹽環境中之蛋白質體研究
★ 蕃茄根部受銅逆境之基因調控★ Pseudomonas nitroreducens TX1 異化辛基苯酚聚氧乙基醇之功能性蛋白質體學:以二維電泳法分析等電點4-8之蛋白質表現
★ Pseudomonas nitroreducens TX1之具耗氧活性之麩胺酸合成酶之單離★ 人類細胞株生產含多種亞型的 干擾素-a之蛋白質體學研究
★ 辛基苯酚之分解:分解菌和生物復育之菌相研究★ 分解辛基苯酚聚氧乙基醇之耗氧酵素(二氫硫辛醯胺脫氫酶)的純化與定性
★ AtNPR1轉殖番茄之性狀分析及抗病機制研究★ Pseudomonas putida TX2分解辛基苯酚聚氧乙基醇及其具雌激素活性代謝物之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) Sulfolobus acidocaldarius DSM 639為一株嗜熱、嗜酸之古生菌,能生長於55-85oC之溫泉與pH值於2-3之酸性環境。相較於其他生物體,此株菌能適應且增生於此不利環境中,其新穎的胞外蛋白質具研究潛力。以蛋白質體學研究,共鑑定出184種蛋白質,佔S. aidocaldarius DSM 639理論預測胞外蛋白質(胞外蛋白體)之24%。其中包含123個蛋白質來自以膠體為基礎系統,23個蛋白質來自於非膠體(溶液內消化)系統。本研究證實此胞外蛋白質組成主要來自假設蛋白質(hypothetical protein) (72種蛋白質,39%);接著是胞外酵素(35種蛋白質,19%)與ATP結合與運輸相關蛋白質(25種蛋白質,14%)。特別的是有84種(49%)蛋白質並未註解於S. aidocaldarius DSM 639,這些蛋白質被鑑定各屬44株古生菌。根據這些古生菌與S. aidocaldarius DSM 639的親源演化樹分析,有24屬廣古菌門(9株嗜超高溫菌、3株嗜高溫菌與12株嗜中溫菌);15株屬古泉菌門(11株嗜超高溫菌、4株嗜高溫菌),此兩大古生菌分類。另外3株嗜高溫菌屬常見於無法培養的Korarchaeota,與1株嗜冷菌屬最新建立的Thauarchaeota。非S. acidocaldarius DSM 639菌種之蛋白質(84種蛋白質,49%)。經由S. acidocaldarius與其他所得鑑定物種之親源演化樹分析,可以得知所有物種幾乎分佈於古生菌主要之兩大類,廣古菌門與古泉菌門,主要包含嗜超高溫菌、嗜高溫菌,少數嗜中溫菌和一株嗜冷菌。依古生菌之胞外蛋白質(胞外蛋白質體)與其他古生菌間之高度同源保守性,在鑑定屬其他古生菌的20種蛋白質上發現原核生物中三種罕見之起始密碼:TTG(L)、GTT(V)與ACG(T)。此結果符合近年來基因預測頻繁出錯的顯著現象。表示高通量蛋白質體學研究藉結合蛋白質體學原始實驗結果與比較基因體學,以提供基因註解去蕪存菁。結合我們團隊先前的研究,Aeropyrum pernix K1、Geobacillus kaustophilus ATCC8005與Thermospora fusca YX,將結果以次細胞位置預測工具進行預測。並將回傳(Recall)與專一性作為評鑑的依據,CELLOv.2.5、PSORTbv.3.0、PRED-SIGNAL、Proteome Analystv.3.0、LocateP直接進行比較,根據MCC值推論CELLO.2.5與PRED-SIGNAL屬隨機預測,PSORTbv.3.0與Proteome Analyst v.3.0較接近準確的預測。由PSORTb的預測結果表示目前最合適古生菌使用的蛋白質次細胞位置預測的工具,但仍可見在未知功能的預測上仍誤導許多實際在胞外發現的蛋白質。
摘要(英) Sulfolobus acidocaldarius DSM 639 is a thermoacidophilic crenarchaeon which can grow in hot springs at 55-85oC and habitat in acidic environments (pH 2-3). The ability to adapt and proliferate in hostile environments compared with other organisms makes it an interesting source for novel extra-cellular proteins. However, the origin of its unusual thermal stability is not fully understood. Via the proteomic approaches, a total of extracellular 184 proteins were identified, representing 24% of the S. acidocaldarius DSM 639 theoretical extra-cellular proteome (exoproteome).Those proteins include 123 proteins from the gel-based system, 23 proteins from the gel-free system. The results demonstrate that the majority of the identified extracellular proteins of S. acidocaldarius DSM 639 were classified as hypothetical proteins (72 unique proteins, 39%), followed by the extracellular enzymes (35 unique proteins, 19%), protein related to ATP binding and transport (25 unique proteins, 14%). Particularly, there are 84 unique proteins (49%) previously not annotated to S. acidocaldarius. These special proteins are identified to 44 archaea respectively. By analyzing the phylogenetic tree with the 44 archaeal species and S. acidocaldarius, there are 24 species (9 hyperthermophiles, 3 thermophiles and 12 mesophiles) belong to Euryarchaeota and 15 species (11 hyperthermophiles and 4 thermophiles) belong to Crenarchaeota, the two major archaeal phyla. Three species (thermophiles) are from the uncultured archaeal phylum Korarchaeota and one species (psychrophiles) is belong to the newly established phylum Thauarchaeota. With the highly homology-conserved archaeal exoproteome between those archaeal species, three rare translation initial codons in prokaryotes, TTG (L), GTT (V) and ACG (T) were found in the 20 proteins from the exoproteome of S. acidocaldarius. This result corresponds to the highlighted phenomenon in recent years, the predicted genes exhibit frequent errors, particularly in start codons. Representing the high-throughput proteomic study provides the annotation correction by combining original proteomic data and comparative genomics. Combination with the previous studies in our team, three species, Aeropyrum pernix K1, Geobacillus kaustophilus ATCC8005 and Thermospora fusca YX, are also predicted by the subcellular localization prediction tools. CELLOv.2.5, PSORTbv.3.0, PRED-SIGNAL, Proteome Analystv.3.0, LocateP, to validate the specificity and recall (Mattews Correlation Coefficient, MCC) and compare with the protein family and domain from Pfam 24.0. It have been found that CELLO.2.5 (Recall: -0.01) and PRED-SIGNAL (Recall: -0.13) are closed to the random predictions (Recall= 0), PSORTbv.3.0 (Recall: 0.45) and Proteome Analyst v.3.0 (Recall: 0.77) are closed to the accurate predictions (Recall= 1). From the results to check PSORTb is the suitable tool for SCL prediction, but still with too much unknown functional results to mislead the extracellular proteins.
關鍵字(中) ★ 古生菌
★ 高溫
★ 蛋白體
★ 胞外
關鍵字(英) ★ Archaea
★ Thermophilic
★ Extracellular
★ Proteome
★ Sulfolobus acidocaldarius DSM 639
論文目次 Contents
Abstract…………………………………………………………………………………….....V
Abbreviation……………………………………………………………………………….XIII
1 Introduction
1-1 Extremophiles, extremozymes……………………………………………………..1
1-2 Archaea……………………………………………………………………………..2
1-3 Sulfolobus acidocaldarius DSM 639…………………………………………….....4
1-4 Exoproteome and subcellular localizations of prokaryotic proteins……….…….....6
1-5 Specific aims………………………………………………………………………..8
2 Materials and Methods
2-1 Microorganism growth conditions………………………………………... ………..9
2-2 The exoproteome extraction and quantification………………………….. ………..9
2-3 SDS-PAGE………………………………………………………………………...10
2-4 2-DE………………………………………………………………………. ……...10
2-5 In-gel tryptic digestion……………………………………………………. ……...12
2-6 In solution tryptic digestion…………………………………………………….…13
2-7 C18 clean-up………………………………………………………………. ………13
2-8 Mass spectrometric analysis……………………………………………………….13
2-9 Database searching……………………………………………………….. ………14
2-10 Protein subcellular localization prediction……………………………….. ………15
2-11 Instruments and chemicals………………………………………………... ……...17
3 Results
3-1 Growth condition of S. acidocaldarius DSM 639………………………... ………21
3-2 Preparation of the exoproteome from S. acidocaldarius DSM 639………. ……...22
3-3 SDS-PAGE analysis and protein identification…………………………... ………23
3-4 2-DE analysis and protein identification…………………………………………..25
3-5 Gel-free tryptic digestion and protein identification………………………………26
3-6 Protein subcellular localization prediction results………………………………....27
4 Discussions
4-1 Exoproteome preparation and improvements……………………………………...28
4-2 Comparative proteomic analysis of S. acidocaldarius DSM 639 using gel-based and gel-free system…………………………………………………………………….30
4-3 Identified proteins of non-original species and rare initial codons………………..36
4-4 Evaluation of the protein subcellular localization prediction tools……………….38
5 Conclusions……………………………………………………………………………...39
6 Acknowledgment………………………………………………………………………..41
References……………………………………………………………………………………42
Figures………………………………………………………………………………………..47
Tables………………………………………………………………………………………....65
Appendix……………………………………………………………………………………114
參考文獻 許琇雁,2009。以蛋白質體學鑑定嗜熱放線菌Thermomonospora fusca YX生長於纖維素之分泌蛋白質。國立中央大學生命科學研究所碩士論文。
黃彰彥,2007。以蛋白質體學篩選嗜高溫細菌Geobacillus kaustophilus ATCC8005之抗熱蛋白質。國立中央大學生命科學研究所碩士論文。
陳珮欣,2008。以蛋白質體學研究嗜超高溫古生菌Aeropyrum pernix K1分泌蛋白體。國立中央大學系統生物與生物資訊研究所碩士論文。
廖嘉欣,2008。以蛋白質體學篩選嗜高溫細菌Geobacillus kaustophilus ATCC8005之抗熱蛋白質。國立中央大學生命科學研究所碩士論文。
Adams, M.W., Perler, F.B., Kelly, R.M., 1995. Extremozymes: expanding the limits of biocatalysis. Biotechnology (N Y), 13, 662-8.
Antelmann, H., Tjalsma, H., Voigt, B., Ohlmeier, S., Bron, S., van Dijl, J.M., Hecker, M., 2001. A proteomic view on genome-based signal peptide predictions. Genome Res, 11, 1484-502.
Assiddiq, B.F., Snijders, A.P., Chong, P.K., Wright, P.C., Dickman, M.J., 2008. Identification and characterization of Sulfolobus solfataricus P2 proteome using multidimensional liquid phase protein separations. J Proteome Res, 7, 2253-61.
Auchtung, T.A., Takacs-Vesbach, C.D., Cavanaugh, C.M., 2006. 16S rRNA phylogenetic investigation of the candidate division "Korarchaeota". Appl Environ Microbiol, 72, 5077-82.
Bagos, P.G., Tsirigos, K.D., Plessas, S.K., Liakopoulos, T.D., Hamodrakas, S.J., 2008. Prediction of signal peptides in archaea. Protein Eng Des Sel, 22, 27-35.
Braunstein, M., Espinosa, B.J., Chan, J., Belisle, J.T., Jacobs, W.R., Jr., 2003. SecA2 functions in the secretion of superoxide dismutase A and in the virulence of Mycobacterium tuberculosis. Mol Microbiol, 48, 453-64.
Breithaupt, H., 2001. The hunt for living gold. The search for organisms in extreme environments yields useful enzymes for industry. EMBO Rep, 2, 968-71.
Brochier-Armanet, C., Boussau, B., Gribaldo, S., Forterre, P., 2008. Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol, 6, 245-52.
Brochier, C., Gribaldo, S., Zivanovic, Y., Confalonieri, F., Forterre, P., 2005. Nanoarchaea: representatives of a novel archaeal phylum or a fast-evolving euryarchaeal lineage related to Thermococcales? Genome Biol, 6, R42.
Brock, T.D., Brock, K.M., Belly, R.T., Weiss, R.L., 1972. Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol, 84, 54-68.
Chen, I., Provvedi, R., Dubnau, D., 2006. A macromolecular complex formed by a pilin-like protein in competent Bacillus subtilis. J Biol Chem, 281, 21720-7.
Chen, L., Brugger, K., Skovgaard, M., Redder, P., She, Q., Torarinsson, E., Greve, B., Awayez, M., Zibat, A., Klenk, H.P., Garrett, R.A., 2005. The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J Bacteriol, 187, 4992-9.
Chong, P.K., Wright, P.C., 2005. Identification and characterization of the Sulfolobus solfataricus P2 proteome. J Proteome Res, 4, 1789-98.
Confalonieri, F., Marsault, J., Duguet, M., 1994. SAV, an archaebacterial gene with extensive homology to a family of highly conserved eukaryotic ATPases. J Mol Biol, 235, 396-401.
Criswell, A.R., Bae, E., Stec, B., Konisky, J., Phillips, G.N., Jr., 2003. Structures of thermophilic and mesophilic adenylate kinases from the genus Methanococcus. J Mol Biol, 330, 1087-99.
De Rosa, M., Gambacorta, A., Gliozzi, A., 1986. Structure, biosynthesis, and physicochemical properties of archaebacterial lipids. Microbiol Rev, 50, 70-80.
Desvaux, M., Hebraud, M., Henderson, I.R., Pallen, M.J., 2006. Type III secretion: what's in a name? Trends Microbiol, 14, 157-60.
Desvaux, M., Hebraud, M., Talon, R., Henderson, I.R., 2009. Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends Microbiol, 17, 139-45.
Egorova, K., Antranikian, G., 2005. Industrial relevance of thermophilic Archaea. Curr Opin Microbiol, 8, 649-55.
Elkins, J.G., Podar, M., Graham, D.E., Makarova, K.S., Wolf, Y., Randau, L., Hedlund, B.P., Brochier-Armanet, C., Kunin, V., Anderson, I., Lapidus, A., Goltsman, E., Barry, K., Koonin, E.V., Hugenholtz, P., Kyrpides, N., Wanner, G., Richardson, P., Keller, M., Stetter, K.O., 2008. A korarchaeal genome reveals insights into the evolution of the Archaea. Proc Natl Acad Sci U S A, 105, 8102-7.
Ellen, A.F., Albers, S.V., Huibers, W., Pitcher, A., Hobel, C.F., Schwarz, H., Folea, M., Schouten, S., Boekema, E.J., Poolman, B., Driessen, A.J., 2009. Proteomic analysis of secreted membrane vesicles of archaeal Sulfolobus species reveals the presence of endosome sorting complex components. Extremophiles, 13, 67-79.
Fenno, J.C., Lee, S.Y., Bayer, C.H., Ning, Y., 2001. The opdB locus encodes the trypsin-like peptidase activity of Treponema denticola. Infect Immun, 69, 6193-200.
Finn, R.D., Tate, J., Mistry, J., Coggill, P.C., Sammut, S.J., Hotz, H.R., Ceric, G., Forslund, K., Eddy, S.R., Sonnhammer, E.L., Bateman, A., 2008. The Pfam protein families database. Nucleic Acids Res, 36, D281-8.
Gallien, S., Perrodou, E., Carapito, C., Deshayes, C., Reyrat, J.M., Van Dorsselaer, A., Poch, O., Schaeffer, C., Lecompte, O., 2009. Ortho-proteogenomics: multiple proteomes investigation through orthology and a new MS-based protocol. Genome Res, 19, 128-35.
Gardy, J.L., Brinkman, F.S., 2006. Methods for predicting bacterial protein subcellular localization. Nat Rev Microbiol, 4, 741-51.
Gardy, J.L., Laird, M.R., Chen, F., Rey, S., Walsh, C.J., Ester, M., Brinkman, F.S., 2005. PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics, 21, 617-23.
Golderer, G., Dlaska, M., Grobner, P., Piendl, W., 1995. TTG serves as an initiation codon for the ribosomal protein MvaS7 from the archaeon Methanococcus vannielii. J Bacteriol, 177, 5994-6.
Greenbaum, D., Luscombe, N.M., Jansen, R., Qian, J., Gerstein, M., 2001. Interrelating different types of genomic data, from proteome to secretome: 'oming in on function. Genome Res, 11, 1463-8.
Grogan, D.W., 1989. Phenotypic characterization of the archaebacterial genus Sulfolobus: comparison of five wild-type strains. J Bacteriol, 171, 6710-9.
Gualerzi, C.O., Pon, C.L., 1990. Initiation of mRNA translation in prokaryotes. Biochemistry, 29, 5881-9.
Harry, J.L., Wilkins, M.R., Herbert, B.R., Packer, N.H., Gooley, A.A., Williams, K.L., 2000. Proteomics: capacity versus utility. Electrophoresis, 21, 1071-81.
Henderson, I.R., Navarro-Garcia, F., Desvaux, M., Fernandez, R.C., Ala'Aldeen, D., 2004. Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev, 68, 692-744.
Herbert, B.R., Molloy, M.P., Gooley, A.A., Walsh, B.J., Bryson, W.G., Williams, K.L., 1998. Improved protein solubility in two-dimensional electrophoresis using tributyl phosphine as reducing agent. Electrophoresis, 19, 845-51.
Hjort, K., Bernander, R., 2001. Cell cycle regulation in the hyperthermophilic crenarchaeon Sulfolobus acidocaldarius. Mol Microbiol, 40, 225-34.
Iwasaki, T., Isogai, Y., Iizuka, T., Oshima, T., 1995. Sulredoxin: a novel iron-sulfur protein of the thermoacidophilic archaeon Sulfolobus sp. strain 7 with a Rieske-type [2Fe-2S] center. J Bacteriol, 177, 2576-82.
Jenney, F.E., Jr., Adams, M.W., 2008. The impact of extremophiles on structural genomics (and vice versa). Extremophiles, 12, 39-50.
Kates, M., 1978. The phytanyl ether-linked polar lipids and isoprenoid neutral lipids of extremely halophilic bacteria. Prog Chem Fats Other Lipids, 15, 301-42.
Kieffer, C., Skalicky, J.J., Morita, E., De Domenico, I., Ward, D.M., Kaplan, J., Sundquist, W.I., 2008. Two distinct modes of ESCRT-III recognition are required for VPS4 functions in lysosomal protein targeting and HIV-1 budding. Dev Cell, 15, 62-73.
Langworthy, T.A., Mayberry, W.R., Smith, P.F., 1974. Long-chain glycerol diether and polyol dialkyl glycerol triether lipids of Sulfolobus acidocaldarius. J Bacteriol, 119, 106-16.
Lawyer, F.C., Stoffel, S., Saiki, R.K., Myambo, K., Drummond, R., Gelfand, D.H., 1989. Isolation, characterization, and expression in Escherichia coli of the DNA polymerase gene from Thermus aquaticus. J Biol Chem, 264, 6427-37.
Mashburn-Warren, L.M., Whiteley, M., 2006. Special delivery: vesicle trafficking in prokaryotes. Mol Microbiol, 61, 839-46.
Mistry, J., Finn, R., 2007. Pfam: a domain-centric method for analyzing proteins and proteomes. Methods Mol Biol, 396, 43-58.
Niehaus, F., Bertoldo, C., Kahler, M., Antranikian, G., 1999. Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol, 51, 711-29.
Okimoto, R., Macfarlane, J.L., Wolstenholme, D.R., 1990. Evidence for the frequent use of TTG as the translation initiation codon of mitochondrial protein genes in the nematodes, Ascaris suum and Caenorhabditis elegans. Nucleic Acids Res, 18, 6113-8.
Poland, J., Bohme, A., Schubert, K., Sinha, P., 2002. Revisiting electroblotting of immobilized pH gradient gels: a new protocol for studying post-translational modification of proteins. Electrophoresis, 23, 4067-71.
Raghava, G.P., Barton, G.J., 2006. Quantification of the variation in percentage identity for protein sequence alignments. BMC Bioinformatics, 7, 415.
Rothschild, L.J., Mancinelli, R.L., 2001. Life in extreme environments. Nature, 409, 1092-101.
Sammut, S.J., Finn, R.D., Bateman, A., 2008. Pfam 10 years on: 10,000 families and still growing. Brief Bioinform, 9, 210-9.
Schmidt, C.L., Hatzfeld, O.M., Petersen, A., Link, T.A., Schafer, G., 1997. Expression of the Solfolobus acidocaldarius Rieske iron sulfur protein II (SOXF) with the correctly inserted [2FE-2S] cluster in Escherichia coli. Biochem Biophys Res Commun, 234, 283-7.
Sonnhammer, E.L., Eddy, S.R., Birney, E., Bateman, A., Durbin, R., 1998. Pfam: multiple sequence alignments and HMM-profiles of protein domains. Nucleic Acids Res, 26, 320-2.
Synowiecki, J., Grzybowska, B., Zdzieblo, A., 2006. Sources, properties and suitability of new thermostable enzymes in food processing. Crit Rev Food Sci Nutr, 46, 197-205.
Szafron, D., Lu, P., Greiner, R., Wishart, D.S., Poulin, B., Eisner, R., Lu, Z., Anvik, J., Macdonell, C., Fyshe, A., Meeuwis, D., 2004. Proteome Analyst: custom predictions with explanations in a web-based tool for high-throughput proteome annotations. Nucleic Acids Res, 32, W365-71.
Takayanagi, S., Kawasaki, H., Sugimori, K., Yamada, T., Sugai, A., Ito, T., Yamasato, K., Shioda, M., 1996. Sulfolobus hakonensis sp. nov., a novel species of acidothermophilic archaeon. Int J Syst Bacteriol, 46, 377-82.
Tjalsma, H., Bolhuis, A., Jongbloed, J.D., Bron, S., van Dijl, J.M., 2000. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev, 64, 515-47.
Vieille, C., Burdette, D.S., Zeikus, J.G., 1996. Thermozymes. Biotechnol Annu Rev, 2, 1-83.
Wang, M., Yafremava, L.S., Caetano-Anolles, D., Mittenthal, J.E., Caetano-Anolles, G., 2007. Reductive evolution of architectural repertoires in proteomes and the birth of the tripartite world. Genome Res, 17, 1572-85.
Woese, C.R., Kandler, O., Wheelis, M.L., 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A, 87, 4576-9.
Yu, C.S., Chen, Y.C., Lu, C.H., Hwang, J.K., 2006. Prediction of protein subcellular localization. Proteins, 64, 643-51.
Zhou, M., Boekhorst, J., Francke, C., Siezen, R.J., 2008. LocateP: genome-scale subcellular-location predictor for bacterial proteins. BMC Bioinformatics, 9, 173-180.
指導教授 黃雪莉(Shir-ly Huang) 審核日期 2010-2-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明