參考文獻 |
[1] P. G. Bergmann, R. Thomson, Spin and Angular Momentum in General Relativity, Phys.
Rev., 89, 400, (1953).
[2] I. S. Booth, R. B. Mann, Moving observers, nonorthogonal boundaries, and quasilocal energy, Phys. Rev. D, 59, 064021, (1999).
[3] I. S. Booth, J. D. E. Creighton, Quasilocal calculation of tidal heating, Phys. Rev. D, 62,
067503, (2000).
[4] J. D. Brown, J.W. York, Quasilocal energy and conserved charges derived from the gravita-
tional action, Phys. Rev. D, 47, 1407–1419, (1993).
[5] J. D. Brown, S. R. Lau, J. W. York, Canonical quasilocal energy and small spheres, Phys.
Rev. D, 59, 064028, (1999).
[6] P. T. Chru´sciel, On the relation between the einstein and the komar expression for the energy
of the gravitational field, Ann. Inst. Henri. Poincaré, 42, 267, (1985).
[7] S. Deser, J. S. Franklin, D. Seminara, Graviton-Graviton Scattering, Bel-Robinson and En-
ergy (Pseudo)-Tensors, Class.Quant.Grav., 16, 2815, (1999).
[8] M. Favata, Energy localization invariance of tidal work in general relativity, Phys. Rev. D,
63, 064013, (2001).
[9] Ph. Freud, Über die Ausdrücke der Geasmtenergie und des Gesamtimpulses eines Ma-
teriellen Systems in der allgemeinen Relativitätstheorie, Ann. Math., 40, 417, (1939).
[10] G. W. Gibbons, The isoperimetric and Bogomolny inequalities for black holes, in Willmore,
T.J., and Hitchin, N.J., eds., Global Riemannian Geometry, 194–202, (Ellis Horwood; Halsted Press, Chichester; New York, 1984).
[11] F.-H. Ho, Quasilocal center-of-mass for GR∥, Ms. Thesis, (National Central University,
Jung-Li, Taiwan, R.O.C.), (2003), unpublished.
[12] J. Katz, J. Biˇcák, D. Lynden-Bell, Relativistic conservation laws and integral constraints for
large cosmological perturbations, Phys. Rev. D, 55, 5957, (1997).
[13] J. Katz, J. Biˇcák, D. Lynden-Bell, Gravitational energy in stationary spacetimes, Class.
Quant. Grav., 23, 7111–7127, (2006).
[14] J. Kijowski, W. M. Tulczyjew, A Symplectic Framework for Field Theories, (Lecture Notes
in Physics 107, Springer-Verlag, Berlin, 1979).
[15] J. Kijowski, A Simple Derivation of Canonical Structure and Quasi-local Hamiltonians in
General Relativity, Gen. Relativ. Grav., 29, 307–43, (1996).
[16] A. Komar, Covariant conservation laws in general relativity, Phys. Rev., 113, 934–936,
(1959).
[17] C. Lanczos, The variational principles of mechanics (University of Toronto Press, Toronto,
1949).
[18] L. D. Landau, E. M. Lifshitz, The Classical Theory of Fields (Oxford: Pergamon, 1975).
[19] S. K. Chakrabarti, R. P. Geroch, C. Liang, Timelike Curves of Limted Acceleration in general
Relativity, J. Math. Phys., 24, 597–598, (1983).
[20] E. A. Martinez, Quasilocal energy for a Kerr black hole, Phys. Rev. D, 50, 4920, (1994).
[21] C. Møller, On the Localization of the Energy of a Physical System in the General Relativity,
Ann. Phys., 4, 347, (1958).
[22] J. M. Nester, F.-F. Meng, C.-M. Chen, Quasilocal Center-of-Mass, J.Korean Phys.Soc., 45,
S22–S25, (2004).
[23] C. W. Misner, K. S. Thorne, J. A. Wheeler, Gravitation (San Francisco: Freeman, 1973).
[24] J. M. Nester, A new gravitation energy expression with simpler positive proof, Phys. Lett. A,
83, 6, 241–242, (1981).
[25] W. Israel, J. M. Nester, Positivity of the Bondi gravitational mass, Phys. Lett. A, 85, 259–260.
(1981).
[26] C.-C. Chang, The Localization of Gravitational Energy: Pseudotensors and Quasilocal Expressions, MSc. Thesis (National Central University, Chung-li), 1999, unpublished.
[27] C.-M. Chen, J. M. Nester, R.-S. Tung, Quasilocal energy momentum for gravity theories,
Phys. Lett. A 203, 5 (1995)
[28] C.-C. Chang, J. M. Nester, C.-M. Chen, Pseudotensors and Quasilocal Energy-Momentum,
Phys. Rev. Lett., 83, 1897–901, (1999).
[29] C.-M. Chen and J. M. Nester, Quasilocal quantities for GR and other gravity theories, Class.
Quant.Grav., 16, 1279–1304, (1999)
[30] C.-M. Chen and J. M. Nester, A Symplectic Hamiltonian Derivation of Quasilocal Energy-
Momentum for GR, Grav. Cosmol., 6, 257, (2000).
[31] J. M. Nester, General pseudotensors and quasilocal quantities, Class. Quant. Grav., 21,
S261–S280, (2004).
[32] C.-M. Chen, J.-L. Liu, J. M. Nester, Quasi-local energy for cosmological models, Mod. Phys.
Lett. A, 22, 2039–2046, (2007).
[33] J. M. Nester, L.-L. So, T. Vargas, On the energy of homogeneous cosmologies, Phys. Rev. D,
78, 044035, (2008).
[34] J. M. Nester, L.-L. So, H. Chen, Energy-momentum density in small regions – the classical
pseudotensors Class. Quant. Grav., 26, 085004, (2009).
[35] R. Beig, N. Ó Murchadha, The Poincaré group as the symmetry group of canonical general
relativity, Ann. Phys., 174, 463–498, (1987).
[36] N. Ó Murchadha, L. B. Szabados, K. P. Tod, Comment on “Positivity of Quasilocal Mass”,
Phys. Rev. Lett., 92, 259001, (2004).
[37] A. Papapetrou, Einstein’s Theory of Gravitation and Flat Space, Proc. Roy. Irish. Acad. A52,
11, (1948).
[38] A. Papapetrou, Lectures on general relativity, (Springer, 1974)
[39] R. Penrose, Naked singularities, Ann. N.Y. Acad. Sci., 224, 125–134, (1973).
[40] R. Penrose, Sigularities and Time-Asmmetry in “General Relativity: An Einstein Centenary
Survey”, ed. S. W. Hawking, andW. Israel, (Cambridge: Cambridge University Press, 1979)
[41] R. Penrose, Quasilocal mass and angular momentum in general relativity, Proc. Roy. Soc.
Lond. A, 381, 53, (1982).
[42] N. P. Knopleva, V. N. Popov, Gauge fields, (San Francisco, 1973)
[43] P. Purdue, Gauge invariance of general relativistic tidal heating, Phys. Rev. D, 60, 104054,
(1999).
[44] T. Regge, C. Teitelboim, Role of surface integrals in the Hamiltonian formulation of general
relativity, Ann. Phys., 88, 286–319, (1974).
[45] G. Sun, Quasilocal conserved quantities for general relativity in small regions, Ms. Thesis,
(National Central University, Jung-Li, Taiwan, R.O.C.), (2005), unpublished.
[46] L.B. Szabados, Quasi-Local Energy-Momentum and Angular Momentum in General Relativity, Living Rev Relativity, 12, 4, (2009).
[47] J. Frauendiener, L. B. Szabados, A note on the post-Newtonian limit of quasi-local energy
expressions, Class. Quant. Grav., 28, 235009, (2011).
[48] R. D. Sorkin, Conserved Quantities as Action Variations, Contemporary Mathematics, 71,
23, (1988).
[49] M. Spivak, A Comprehensive Introduction to Differential Geometry, vol. 5, 2nd edition.
[50] Y. Shi, L.-F. Tam, Positive mass theorem and the boundary behaviors of compact manifolds
with nonnegative scalar curvature, J. Differ. Geom., 62, 79–125, (2002).
[51] R. C. Tolman, Relativity Thermodynamics and Cosmology, (London: Oxford University
Press, 1934).
[52] A. Trautman, Conservation Laws in General Relativity in “Gravitation: An Introduction to
Current Research”, ed. L. Witten (Wiley, New York, 1962)
[53] K. H. Vu, Quasilocal Energy-Momentum and Angular Momentum for Teleparallel Gravity,
MSc. Thesis (National Central University, Chung-li), (2000), unpublished.
[54] R. M. Wald, General Relativity, (The University of Chicago Press, 1984).
[55] S. Weinberg, Gravitation and Cosmology, (New York: Wiley, 1972).
[56] E. Witten, A new proof of the positive energy theorem, Commun. Math. Phys., 80, 381–402,
(1981).
[57] X. Wu, C.-M. Chen, J. M. Nester, Quasilocal energy-momentum and energy flux at null
infinity, Phys. Rev. D, 71, 124010 (2005).
[58] R. Schoen, S.-T. Yau, On the Proof of the Positive Mass Conjecture in General Relativity,
Commun. math. Phys., 65, 45–76 (1979).
[59] R. Schoen, S.-T. Yau, Proof that the Bondi mass is positive, Phys. Rev. Lett., 48, 369-371,
(1982).
[60] C.-C. M. Liu, S.-T. Yau, Positivity of quasilocal mass, Phys. Rev. Lett., 90, 231102-1-4,
(2003).
[61] M.-T. Wang, S.-T. Yau, A generalization of Liu-Yau’s quasi-local mass, Commun. Anal.
Geom., 15, 249, (2007).
[62] M.-T.Wang, S.-T. Yau, Quasilocal Mass in General Relativity, Phys. Rev. Lett., 102, 021101,
(2009).
[63] M.-T. Wang, S.-T. Yau, Commun. Math. Phys., 288, 919–942, (2009).
[64] N. Nadirashvili, Y. Yuan, Counterexamples for Local Isometric Embedding, arXiv e-print,
(2002). [math.DG/0208127]. |