以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:23 、訪客IP:18.191.200.47
姓名 田傑文(Jie-Wun Tian) 查詢紙本館藏 畢業系所 機械工程學系 論文名稱 固態氧化物燃料電池元件熱應力與機械性質分析
(Analysis of Thermal Stresses and Mechanical Properties for the Components of Solid Oxide Fuel Cell)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 固態氧化物燃料電池是一種高溫型的燃料電池,較高的操作溫度使它可以得到較高的能量轉換效率,但也因為元件之間在高溫下可能發生交互的化學反應,因此材料可能在高溫下劣化。熱應力影響著固態氧化物燃料電池的結構耐久性,其來源為元件之間的熱膨脹係數差異和溫度梯度。過大的熱應力會造成元件的損壞並危及固態氧化物燃料電池堆的結構耐久性。因此,為了發展可靠的固態氧化物燃料電池堆,對於元件在室溫及操作溫度下的熱應力分佈和材料機械性質有必要作系統化的研究。
本研究的第一個目標是利用有限元素分析計算三單元平板式固態氧化物燃料電池堆的熱應力分佈,分析的模型是依據核能研究所電池堆設計所建立,分別匯入兩個不同的溫度場,探討溫度梯度對於元件熱應力的影響。分析結果顯示,對於這兩個溫度場,溫度梯度的影響很小,而熱膨脹係數的不匹配仍然是熱應力產生的主要原因。
第二個目標是測定核能研究所開發的一款陽極材料的機械性質,其代號為Slip-81。藉由雙軸抗折測試分別在室溫及800 oC下測定試片的抗折強度與楊氏模數。將實驗量得的Slip-81之機械性質匯入前述的熱應力分析中,所有元件的最大應力值皆低於其相對應的材料強度。
本研究的第三個目標是研究玻璃陶瓷與金屬連接板間的接合強度及破壞模式。所使用的玻璃陶瓷為核能研究所開發的一款代號為GC-9的材質,金屬連接板則是使用一款代號為Crofer 22 H的商用肥粒鐵系不銹鋼。藉由設計製作兩款三明治試片,分別量測其在室溫和800 oC下的剪力強度及在室溫下的張力強度。為了評估試片燒結溫度對於接合強度的影響,試片分在850 oC燒結和900 oC燒結。結果顯示,無論在室溫或是800 oC下,900 oC燒結試片的張力強度和剪力強度皆高於850 oC燒結的試片。顯然燒結溫度的增加可以增進試片接合的性質,乃是在較高的溫度下,玻璃陶瓷在金屬連接板上的潤濕性質會較好。
金屬連接板的預氧化處理對於接合強度的影響也在本研究的討論範圍當中。結果顯示,預氧化處理對於850 oC燒結的剪力試片強度有負面的影響,但是對於900 oC燒結的剪力試片強度卻有提昇的效果。由微結構分析的結果可以發現,此種接合件試片有三種破壞模式。第一,脫層現象發生在玻璃陶瓷基材與其氧化層的界面,此破壞模式所對應的接合強度是最低的。第二,脫層現象發生於金屬連接板基材與其氧化層的界面,並伴隨著中等的接合強度。第三,破壞可能發生在玻璃陶瓷基材之中,此種破壞模式所對應的接合強度是最高的。
摘要(英) The high operating temperature (OT) enables solid oxide fuel cells (SOFCs) to have a superior efficiency of energy conversion while accompanying concerns such as degradation of materials because of undesirable reactions between components. Structural durability of SOFC is affected by the thermal stresses due to thermal mismatch between components. Excessive thermal stresses may lead to fracture of components endangering the mechanical integrity of an SOFC stack. Therefore, a systematic investigation of thermal stress distribution and mechanical properties of components at room temperature (RT) and OT is essential for development of a reliable SOFC stack.
The first objective of this study is using finite element analysis (FEA) to calculate the thermal stress distribution in a 3-cell planar SOFC stack. The simulated model was constructed based on a stack design of compressive sealing being developed at the Institute of Nuclear Energy Research (INER). Two temperature profiles were applied to evaluate the effect of thermal gradient on the critical stresses in the components. Simulation results indicate that the effect of thermal gradient could be neglected for the given two temperature profiles.
The second objective is to determine the mechanical properties of a potential anode material, Slip-81, developed at INER. Biaxial flexural strength and Young’s modulus were determined at RT and a high temperature of 800 oC by biaxial flexural ring-on-ring testing. The measured mechanical properties were applied to the aforementioned FEA modeling of thermal analysis. The critical stresses of all components were lower than the corresponding fracture strength by the use of Slip-81 anode.
The third purpose in the current study is to investigate the joint strength between the glass-ceramic and metallic interconnect. The utilized materials were the GC-9 glass-ceramic developed at INER and the Crofer 22 H which is a commercial ferritic stainless steel. A methodology of evaluating the joint strength was developed by testing two types of sandwich-like specimens under tensile and shear loading. The shear strength at RT and 800 oC and tensile strength at RT were measured. The effect of sintering temperature on the joint strength was studied. The measured tensile and shear strength of the specimens sintered at 900 oC were greater than those of the ones sintered at 850 oC at both testing temperatures of RT and 800 oC. Apparently, an increase of sintering temperature could improve the joining performance due to a better wetting behavior of glass-ceramic.
The effect of pre-oxidization of metallic interconnect on the joint strength was also evaluated. The pre-oxidization treatment degraded the shear strength of the specimens sintered at 850 oC. However, it enhanced the shear strength of the specimens sintered at 900 oC. Through the analysis of interfacial microstructure, fracture modes of the joint were correlated with the measured strength. Three types of fracture modes were identified for the joint specimens. Firstly, the lowest joint strength was accompanied with delamination at the interface between the glass-ceramic substrate and an adjacent oxide layer, chromate (BaCrO4). Secondly, delamination at the interface between the metal substrate and the oxide layer of the metal, chromia (Cr2O3), accompanied with a medium joint strength. Thirdly, the fracture might take place in the glass-ceramic layer for a larger joint strength.
關鍵字(中) ★ 熱應力
★ 固態氧化物燃料電池
★ 玻璃陶瓷
★ 連接板關鍵字(英) ★ interconnect
★ glass-ceramic
★ solid oxide fuel cell
★ SOFC
★ thermal stress論文目次 LIST OF TABLES................................................................................................................VIII
LIST OF FIGURES...............................................................................................................IX
1. INTRODUCTION............................................................................................................1
1.1 Solid Oxide Fuel Cell.....................................................................................................1
1.2 Components of Planar SOFC ................................................................................ 2
1.2.1 Anode ........................................................................................................3
1.2.2 Cathode......................................................................................................3
1.2.3 Electrolyte..................................................................................................4
1.2.4 Interconnect ...............................................................................................4
1.2.5 Sealant .......................................................................................................5
1.3 Thermal Stresses in Planar SOFC ......................................................................... 7
1.3.1 CTE Mismatch...........................................................................................8
1.3.2 Thermal Gradient.......................................................................................8
1.3.3 Numerical Analysis ...................................................................................9
1.3.4 Effects of Sealing Design ........................................................................ 10
1.4 Mechanical Properties of SOFC Components .................................................... 10
1.4.1 PEN..........................................................................................................10
1.4.2 Joint of Glass-Ceramic Sealant and Metallic Interconnect ..................... 12
1.5 Purposes and Scope............................................................................................. 13
2. MODELING................................................................................................................15
2.1 Finite Element Model.......................................................................................... 15
2.2 Boundary Conditions and Temperature Profiles ................................................. 16
2.3 Material Properties and Failure Criteria.............................................................. 17
2.4 Simulation Procedures......................................................................................... 18
3. MATERIAL AND EXPERIMENTAL PROCEDURES ............................................. 19
3.1 Joint of Glass-Ceramic Sealant and Metallic Interconnect ................................. 19
3.1.1 Materials and specimen preparation........................................................ 19
3.1.2 Mechanical testing and microstructural analysis..................................... 21
3.2 Mechanical Testing of Anode Material ............................................................... 21
3.2.1 Ring-on-ring test......................................................................................22
3.2.2 Determination of mechanical properties.................................................. 22
3.2.3 Weibull statistic analysis .........................................................................23
4. RESULTS AND DISCUSSION..................................................................................24
4.1 Mechanical Properties of Anode Material........................................................... 24
4.2 Thermal Stress Analysis ...................................................................................... 25
4.2.1 Effect of thermal gradient........................................................................ 27
4.2.2 Reliability for use of Slip-81 anode......................................................... 27
4.3 Mechanical Properties of Joint of Glass-Ceramic Sealant and Metallic
Interconnect......................................................................................................... 28
4.3.1 Effect of sintering temperature on the joint strength............................... 29
4.3.2 Effect of pre-oxidization of metallic interconnect on the joint
strength .................................................................................................... 31
4.3.3 Analysis of interfacial microstructure ..................................................... 33
5. CONCLUSIONS.........................................................................................................36
REFERENCES.................................................................................................................... 38
TABLES .............................................................................................................................. 42
FIGURES ............................................................................................................................ 46
參考文獻 1. H. U. Anderson and F. Tietz, High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, edited by S. C. Singhal and K. Kendall, Elsevier, Kidlington, UK, 2003.
2. W. Z. Zhu and S. C. Deevi, “A Review on the Status of Anode Materials for Solid Oxide Fuel Cells,” Materials Science and Engineering, Vol. A362, 2003, pp. 228-239.
3. J. Malzbender, J. Mönch, R. W. Steinbrech, T. Koppitz, S. M. Gross and J. Remmel, “Symmetric Shear Test of Glass-Ceramic Sealants at SOFC Operation Temperature,” Journal of Materials Science, Vol. 42, 2007, pp. 6297-6301.
4. T. L. Wen, D. Wang, M. Chen, H. Tu, Z. Lu, Z. Zhang, H. Nie, and W. Huang, “Material Research for Planar SOFC Stack,” Solid State Ionics, Vol. 148, 2002, pp. 513-519.
5. H. Yokokawa, N. Sakai, T. Horita, and K. Yamaji, “Recent Developments in Solid Oxide Fuel Cell Materials,” Fuel Cells, Vol. 1, 2001, pp. 117-131.
6. H. C. Yu and K. Z. Fung, “Electrode Properties of La1-xSrxCuO2.5-? as New Cathode Materials for Intermediate-Temperature SOFCs,” Journal of Power Sources, Vol. 133, 2004, pp. 162-168.
7. L. Antoni, “Materials for Solid Oxide Fuel Cells: the Challenge of their Stability,” Materials Science Forum, Vols. 461-464, 2004, pp. 1073-1090.
8. M. Stanislowski, E. Wessel, T. Markus, L. Singheiser, and W. J. Quadakkers “Chromium Vaporization from Alumina-Forming and Aluminized Alloys,” Solid State Ionics, Vol. 179, 2008, pp. 2406-2415.
9. S. Fontana, S. Chevalier, and G. Caboche, “Metallic Interconnects for Solid Oxide Fuel Cell: Effect of Water Vapour on Oxidation Resistance of Differently Coated Alloys,” Journal of Power Sources, Vol. 193, 2009, pp. 136-145.
10. J. W. Fergus, “Effect of Cathode and Electrolyte Transport Properties on Chromium Poisoning in Solid Oxide Fuel Cells,” International Journal of Hydrogen Energy, Vol. 32, 2007, pp. 3664-3671.
11. J. W. Fergus, “Metallic Interconnects for Solid Oxide Fuel Cells,” Materials Science and Engineering A, Vol. 397, 2005, pp. 271-283.
12. J. W. Fergus, “Sealants for Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 147, 2005, pp. 46-57.
13. P. A. Lessing, “A Review of Sealing Technologies Applicable to Solid Oxide Electrolysis Cells,” Journal of Materials Science, Vol. 42, 2007, pp. 3465-3476.
14. H.-T. Chang, C.-K. Lin and C.-K. Liu, “High-Temperature Mechanical Properties of a Glass Sealant for Solid Oxide Fuel Cell,” Journal of Power Sources, Vol. 189, 2009, pp. 1093-1099.
15. V. A. Haanappel, V. Shemet, I. C. Vinke and W. J. Quadakkers, “A Novel Method to Evaluate the Suitability of Glass Sealant-Alloy Combinations under SOFC Stack Conditions,” Journal of Power Sources, Vol. 141, 2005, pp. 102-107.
16. P. Batfalsky, V. A. C. Haanappel, J. Malzbender, N. H. Menzler, V. Shemet, I. C. Vinke and R. W. Steinbrech, “Chemical Interaction Between Glass-Ceramic Sealants and Interconnect Steels in SOFC Stacks,” Journal of Power Sources, Vol. 155, 2006, pp. 128-137.
17. S. Ghosh, A. D. Sharma, P. Kundu, and R. N. Basuz, “Glass-Ceramic Sealants for Planar IT-SOFC: A Bilayered Approach for Joining Electrolyte and Metallic Interconnect,” Journal of the Electrochemical Society, Vol. 155, 2008, pp. 473-478.
18. A. Nakajo, Z. Wuillemin, J. Van herle, and D. Favrat, “Simulation of Thermal Stresses in Anode-Supported Solid Oxide Fuel Cell Stacks. Part II: Loss of Gas-Tightness, Electrical Contact and Thermal Buckling,” Journal of Power Sources, Vol. 193, 2009, pp. 216-226.
19. W. Fischer, J. Malzbender, G. Blass, and R. W. Steinbrech, “Residual Stresses in Planar Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 150, 2005, pp. 73-77.
20. J. Malzbender, W. Fischer, and R. W. Steinbrech, “Studies of Residual Stresses in Planar Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 182, 2008, pp. 594-598.
21. C. S. Montross, H. Yokokawa, and M. Dokiya, “Thermal Stresses in Planar Solid Oxide Fuel Cells due to Thermal Expansion Differences,” British Ceramic Transactions, Vol. 101, 2002, pp. 85-93.
22. K. P. Recknagle, R. E. Williford, L. A. Chick, D. R. Rector, and M. A. Khaleel, “Three-Dimensional Thermo-Fluid Electochemical Modeling of Planar SOFC Stacks,” Journal of Power Sources, Vol. 113, 2003, pp. 109-114.
23. T. Zhang, Q. Zhu, W. L. Huang, Z. Xie, and X. Xin, “Stress Field and Failure Probability Analysis for the Single Cell of Planar Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 182, 2008, pp. 540-545.
24. J. Laurencin, G. Delette, F. Lefebvre-Joud, and M. Dupeux, “A Numerical Tool to Estimate SOFC Mechanical Degradation: Case of the Planar Cell Configuration,” Journal of the European Ceramic Society, Vol. 28, 2008, pp. 1827-1869.
25. C.-K. Lin, T.-T. Chen, Y.-P. Chyou, and L.-K. Chiang, “Thermal Stress Analysis of a Planar SOFC Stack,” Journal of Power Sources, Vol. 164, 2007, pp. 238-251.
26. A.-S. Chen, “Thermal Stress Analysis of a Planar SOFC Stack with Mica Sealants,” M.S. Thesis, National Central University, 2007.
27. C.-K. Lin, L.-H. Huang, L.-K. Chiang, and Y.-P. Chyou, “Thermal Stress Analysis of a Planar Solid Oxide Fuel Cell Stacks: Effects of Sealing Design,” Journal of Power Sources, Vol. 192, 2009, pp. 515-524.
28. K. S. Weil and B. J. Koeppel, “Comparative Finite Element Analysis of the Stress-Strain States in Three Different Bonded Solid Oxide Fuel Cell Seal Designs,” Journal of Power Sources, Vol. 180, 2008, pp. 343-353.
29. A. Selcuk, G. Merere and A. Atkinson, “The Influence of Electrodes on the Strength of Planar Zirconia Solid Oxide Fuel Cells,” Journal of Materials Science, Vol. 36, 2001, pp. 1173-1182.
30. M. Radovic and E. Lara-Curzio, “Mechanical Properties of Tape Cast Nickel-Based Anode Materials for Solid Oxide Fuel Cells Before and After Reduction in Hydrogen,” Acta Materialia, Vol. 52, 2004, pp. 5747-5756.
31. Y. Wang, M. E. Walter, K. Sabolsky, and M. M. Seabaugh, “Effects of Powder Sizes and Reduction Parameters on the Strength of Ni-YSZ Anodes,” Solid State Ionics, Vol. 177, 2006, pp. 1517-1527.
32. F. L. Lowrie and R. D. Rawlings, “Room and High Temperature Failure Mechanisms in Solid Oxide Fuel Cell Electrolytes,” Journal of the European Ceramic Society, Vol. 20, 2000, pp. 751-760.
33. F. Smeacetto, M. Salvo, M. Ferraris, V. Casalegno, P. Asinari, and A. Chrysanthou, “Characterization and Performance of Glass-Ceramic Sealant to Join Metallic Interconnects to YSZ and Anode-Supported-Electrolyte in Planar SOFCs,” Journal of the European Ceramic Society, Vol. 28, 2008, pp. 2521-2527.
34. Y.-S. Chou, J. W. Stevenson, and P. Singh, “Effect of Pre-Oxidation and Environmental Aging on the Seal Strength of a Novel High-Temperature Solid Oxide Fuel Cell (SOFC) Sealing Glass with Metallic Interconnect,” Journal of Power Sources, Vol. 184, 2008, pp. 238-244.
35. Y.-S. Chou, J. W. Stevenson, and P. Singh, “Effect of Aluminizing of Cr-Containing Ferritic Alloys on the Seal Strength of a Novel High-Temperature Solid Oxide Fuel Cell Sealing Glass,” Journal of Power Sources, Vol. 185, 2008, pp. 1001-1008.
36. “Structural Elements,” Chapter 15 in ABAQUS Analysis User’s Manual V6.5, ABAQUS, Inc., Providence, RI, USA, 2004.
37. Y. S. Chou and J. W. Stevenson, “Phlogopite Mica-Based Compressive Seals for Solid Oxide Fuel Cells: Effect of Mica Thickness,” Journal of Power Sources, Vol. 124, 2003, pp. 473-478.
38. Metals Handbook, 10th Ed., Vol. 2, ASM International, Materials Park, OH, USA, 1990, pp. 437-441.
39. K. S. Weil, J. E. Deibler, J. S. Hardy, D. S. Kim, G.-G. Xia, L. A. Chick, and C. A. Coyle, “Rapture Testing as a Tool for Developing Planar Solid Oxide Fuel Cell Seals,” Journal of Material Engineering and Performance, Vol. 13, 2004, pp. 316-326.
40. S. Habelitz, G. Carl, C. Rüssel, S. Thiel, U. Gerth, J.-D. Schnapp, A. Jordanov, and H. Knake, “Mechanical Properties of Oriented Mica Glass Ceramic,” Journal of Non-Crystalline Solids, Vol. 220, 1997, pp. 291-298.
41. W. Koster, “The Temperature Dependence of the Elasticity Modulus of Pure Metals,” Zeitschrift fur Metallkunde, Vol. 39, 1948, pp. 1-9. (in German)
42. L.-H. Huang, “Effect of Sealing Design on the Thermal Stresses in SOFC Stack,” M.S. Thesis, National Central University, 2008.
43. “Standard Test Method for Monotonic Equibiaxial Flexural Strength of Advanced Ceramics at Ambient Temperature,” ASTM C1499-05, Annual Book of ASTM Standards, Vol. 15.01, American Society for Testing and Materials, Philadelphia, USA, 2005.
44. D. W. Richerson, Modern Ceramic Engineering: Properties, Processing, and Use in Design, 2nd Ed., Marcel Dekker, Inc., New York, USA, 1992.
45. C.-K. Liu, T.-Y. Yung, S.-H. Wu, and K.-F. Lin, Proceedings of the MRS_Taiwan Annual Meeting 2007 (CD-ROM), 2007. (in Chinese)
46. F. Smeacetto, A. Chrysanthou, M. Salvo, Z. Zhang, and M. Ferraris, “Performance and Testing of Glass-Ceramic Sealant Used to Join Anode-Supported-Electrolyte to Crofer22APU in Planar Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 190, 2009, pp. 402-407.
指導教授 林志光(Chih-Kuang Lin) 審核日期 2009-7-26 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare