參考文獻 |
Aruna, S.T.; Tirosh, S. and Zaban, A., Nanosize rutile titania particle synthesis via a hydrothermal method without mineralizers, J. Mater. Chem. (2000), 10, 2388–2391.
Arabatzis, I. M.; Stergiopoulos, T.; Bernard, M. C.; Labou, D.; Neophytides, S. G. and Falaras, P., Silver–modified Titanium Dioxide Thin Films for Efficient Photodegradation of Methyl Orange”, Appl. Catal., B (2003), 42, 187–201.
Asahi, R. ; Morikawa, T.; Ohwaki, T.; Aoki, K. and Taga, Y., Visible–light photocatalysis in nitrogen–doped titanium oxides, Science 293 (2001), 269–271.
Balek, V.; Li, D.; Subrt, J.; Vecerníková, E.; Hishita, S.; Mitsuhashi, T. and Haneda, H., Characterization of nitrogen and fluorine co–doped titania photocatalyst: effect of temperature on microstructure and surface activity properties, J. Phys. Chem. Solids (2007), 68, 5–6, 770–774.
Beltran, A.; Gracia, L. and Andres, Density functional theory study of the brookite surfaces and phase transitions between natural titania polymorphs, J., J. Phys. Chem. B (2006), 110, 23417_23423.
Chen, Q.; Tang, C. and Zheng, G., First–principles study of TiO2 anatase (101) surfaces doped with N, Physica B (2009), 404, 1074–1078.
Choi, W; Termin, A and Hoffmann, M. R., The role of metal ion dopants in quantum–sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics, J. Phys. Chem. (1994), 98. 13669–13679.
Chen, W.; Fadeev, A. Y.; Hsieh, M. C.; Oner D.; Youngblood, J. and Mcarthy, T. J., Ultrahydrophobic and ultralyophobic surfaces: Some comments and examples, Langmuir (1999), 15, 3395–3399.
Choi, W. Y.; Termin, A. and Hoffmann, M. R., Effects of Metal–Ion Dopants on the Photocatalytic Reactivity of Quantum–Sized TiO2 Particles, Angew. Chem., Int. Ed. (1994), 33, 1091–1092.
Dobosz, A. and Sobczyński, A., The Influence of Silver Additives on Titania Photoactivity in the Photooxidation of Phenol, Water Res. (2003), 37, 1489–1496.
Dvoranova, D.; Brezova, V.; Mazur, M. and Malati, M. A., Investigations of metal–doped titanium dioxide photocatalysts, Appl. Catal., B–Environ. (2002), 37, 91–105.
Epling, W. S.; Peden, C. H. F.; Henderson, M. A. and Diebold, U., Surf. Sci. (1998), 412–413, 333–343.
Fetterolf, M. L., Patel, H. V. and Jennings, J. M., Adsorption of Methylene Blue and Acid Blue 40 on Titania from Aqueous Solution, J. Chem. Eng. Data (2003), 48, 831–835.
Frank, S. N. and Bard, A. J., Heterogeneous Photocatalytic Oxidation of Cyanide and Sulfite in Aqueous Solutions at Semiconductor Powders, J. Phys. Chem. (1977), 81, 1484–1488.
Fujishima, A. and Honda, K., Electrochemical photolysis of water at a semiconductor electrode, Nature (1972), 238, 37–38.
Fujishima, A.; Hashimoto, K. and Watanabe, T., 1st edition, BKC, Tokyo, 1999.
Fujishima, A.; Hashimoto, K. and Watanabe, T., TiO2 Photocatalysis Fundamentals and Applications, BKC Inc., Japan, 1999.
Fujishima, A.; Zhang, X. and Tryk, D. A., TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep. (2008), 63, 515–582.
Fujishima, A.; Ohtsuki, J.; Yamashita, T. and Hayakawa, S., Behavior of tumor cells on photoexcited semiconductor surface, Photomed. Photobiol. (1986), 8, 45–46.
Giannakopoulou, T.; Todorova, N.; Trapalis, C. and Vaimakis, T., Effect of fluorine doping and SiO2 under–layer on the optical properties of TiO2 thin films, Mater. Lett. (2007), 61, 23–24, 4474–4477.
Gole, J. L.; Stout, J. D.; Burda, C.; Lou, Y. and X. Chen, Highly efficient formation of visible light tunable TiO2–xNx photocatalysts and their transformation at the nanoscale, J. Phys. Chem. B (2004), 108, 4, 1230–1240.
Hashimoto, K.; Irie, H. and Fujishima A., TiO2 photocatalysis: A historical overview and future prospects, Jpn. J. Appl. Phys. 2005, 44, 8269
Hazlett R. D., Mittal K.L. (Ed.), Wettability and Adhesion, VSP, Utrecht, 1993, 173.
Herrmann, J. M.; Tahiri, H.; Ait–Ichou, Y.; Lassaletta, G.; González–Elipe, A. R. and Fernández, A., Characterization and Photocatalytic Activity in Aqueous Medium of TiO2 and Ag/TiO2 Coating on Quartz, Appl. Catal., B–Environ. (1997), 13, 219–228.
Huang, D.; Liao, S.; Liu, J. M.; Dang, Z. and Petrik, L., Preparation of visible–light responsive N–F–codoped TiO2 photocatalyst by a sol–gel–solvothermal method, J. Photochem. Photobiol., A (2006), 184, 3, 282–288.
Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C. and Herrmann, J. M., Photocatalytic Degradation Pathyway of Methylene Blue in Water, Appl. Catal., B–Environ. (2001), 31, 145–157.
Jia, H.; Xu, H.; Hu, Y., Tang Y. and Zhang, L., TiO2@CdS core–shell nanorods films: Fabrication and dramatically enhanced photoelectrochemical properties, Electrochemistry Communications (2007), 9, 354–360.
Kang, M., Synthesis of Fe/TiO2 photocatalyst with nanometer size by solvothermal method and the effect of H2O addition on structural stability and photodecomposition of methanol, J. Mol. Catal A: Chem. (2003), 97, 173–183.
Karvinen, S.; Hirva, P. and Pakkanen, T. A., Ab initio quantum chemical studies of cluster models for doped anatase and rutile TiO2, J. Mol. Struct.–Theochem (2003), 626, 271–277.
Kim, C. S.; Moon, B. K.; Park, J. H. and Son, S. M., Solvotherinal synthesis of nanocrystalline TiO2 in toluene with surfactant, J. Cryst. Growth (2003), 254, 405–410.
Kim, S. B. and Hong, S. C., Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst, Appl. Catal., B–Environ. (2002), 35, 305–315.
Kolen’ko, Y. V.; Burukhin, A. A.; Churagulov, B. R. and Oleynikov, N. N., Synthesis of nanocrystalline TiO2 powders from aqueous TiOSO4 solutions under hydrothermal conditions, Mater. Lett. (2003), 57, 1124–1129.
Kreutler, B. and Bard, J. A., Heterogeneous photocatalytic preparation of supported catalysts. Photodeposition of platinum on titanium dioxide powder and other substrates, J. Am. Chem. Soc. (1978), 100, 4317–4318.
Kudo, A., Photocatalyst materials for water splitting, Catal. Surv. Asia (2003), 7, 31–38.
Lin, Y. C. and Lin, C. H., Catalytic and photocatalytic degradation of ozone via utilization of controllable nano–Ag modified on TiO2, Environmental Progress (2008), 27, 4, 496–502.
Li, J.; Xu, J.; Dai, W. L.; Li, H. and Fan K., Direct hydro–alcohol thermal synthesis of special core–shell structured Fe–doped titania microspheres with extended visible light response and enhanced photoactivity, Appl. Catal., B–Environ. (2009), 85, 162–170.
Li, X. Y.; Yue, P. L. and Kutal, C., Synthesis and photocatalytic oxidation properties of iron doped titanium dioxide nanosemiconductor particles, New J. Chem. (2003), 27, 1264–1269.
Linsebigler, A. L., Lu, G., Yates J. T. and Jr., Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results, Chem. Rev., 95, 735–758 (1995).
Li, F. B. and Li, X. Z., The Enhancement of Photodegradation Efficiency using Pt/TiO2 Catalyst, Chemosphere (2002), 48, 1103–1111.
Li, F. B. and Li, X. Z., Photocatalytic Properties of Gold/gold ion–modified Titanium Dioxide for Wastewater Treatment, Appl. Catal., A (2002), 228, 15–27.
Lakshmi, S., Renganathan, R. and Fujita, S., Study on TiO2–mediated Photocatalytic Degradation of Methylene Blue, J. Photochem. Photobiol., A (1995), 88, 163–167.
Li, X. Z.; Li, F. B.; Yang, C. L. and Ge, W. K., Photocatalytic Activity of WOx–TiO2 under Visible Light Irradiation, J. Photochem. Photobiol., A (2001), 141, 209–217.
Mohammadi, R.; Wassink, J. and Amirfazli, A., Effect of Surfactants on Wetting of Super–Hydrophobic Surfaces, Langmuir (2004), 20, 9657–9662.
Matsunaga, T.; Tomoda, R., Nakajima, T. and Wake, H., Photoelectrochemical sterilization of microbial cells by semiconductor powders, FEMS Microbiol. Lett. 1985, 29, 211–214.
Meichtry, J. M.; Rivera, V.; Iorio, Y. D., Rodríguez, H. B., Román, E. S.; Grela M. A. and Litter, M. I., Photoreduction of Cr(VI) using hydroxoaluminiumtricarboxymonoamide phthalocyanine adsorbed on TiO2, Photochemical & Photobiological Sciences (2009), 8, 5, 604–612.
Martin, S. T. ; Morrison, C. L.; Hoffmann, M. R., Photochemical mechanism of size–quantized vanadium–doped TiO2 particles, J. Phys. Chem. (1994), 98, 13695–13704.
Ohno, T.; Akiyoshi, M.; Umebayashi, T.; Asai, K.; Mitsui, T. and Matsumura, M., Preparation of S–doped TiO2 photocatalysts and their photocatalytic activities under visible light, Appl. Catal., A (2004), 265, 1, 115–121.
O’Regan, B and Grätzel, M., A low–cost, high–efficiency solar cell based on dye–sensitized colloidal TiO2 films, Nature (1991), 353, 737–739.
Pruden, A. L. and Ollis, D. F., Photoassisted heterogeneous catalysis: The degradation of trichloroethylene in water, J. Catal. (1983), 82, 404–417.
Poznyak, S. K.; Kokorin, A. I. and Kulak A. I., Effect of electron and hole acceptors on the photoelectrochemical behaviour of nanocrystalline microporous TiO2 electrodes, J. Electroanal. Chem. (1998), 442, 99–105.
Pedraza, F. and Vasquez, A., Obtention of TiO2 rutile at room temperature through direct oxidation of TiCl3, J. Phys. Chem. Solids (1999), 60, 445–448.
Wang, W.; Zhang, J.; Chen, F.; He, D. and Anpo, M., Preparation and photocatalytic properties of Fe3+–doped Ag@TiO2 core–shell nanoparticles, J. Colloid Interface Sci. (2008), 323, 182–186.
Kawai, A. and Nagata, H., Wetting behavior of liquid on geometrical rough–surface formed by photolightgraphy, Japan. J. Appl. Phys. (1994), 33, 1283–1285.
Oner, D. and Mcarthy, Ultrahydrophobic surfaces. Effects of topography length scales on wettability, T. J., Langmuir (2000), 16, 7777–7782.
Wolfram, E. and Faust, R., Wenzel J.F. Faraday (Ed.),Wetting, Spreading and Adhesion, Academic Press, London, 1978, Chapter 10.
Rauf, M. A. and Ashraf, S. S., Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution, Chem. Eng. J. (2009), 151, 10–18.
Sato, S., Photocatalytic activity of NOx–doped TiO2 in the visible light region, Chem. Phys. Lett. (1986), 123, 1–2, 126–128.
Sonawane R. S.; Kale B. B. and Dongare M. K., Preparation and photo–catalytic activity of Fe–TiO2 thin films prepared by sol–gel clip coating, Mater. Chem. Phys. (2004), 85, 52–57.
Sonawane, R.S.; Hegde, H.G. and Dongare, M.K., Preparation of titanium(iv) oxide thin–film photocatalyst by sol–gel dip coating, Mater. Chem. Phys. (2003), 77, 744–750.
Sökmen, M. and Özkan, A., Decolourising Textile wastewater with modified titania: the effects of inorganic anions on the photocatalysis, J. Photochem. Photobiol., A (2002), 147, 77–81.
Tom, R. T.; Nair, A. S.; Singh, N.; Aslam, M., Nagendra, C. L.; Philip, R., Vijayamohanan, K. and Pradeep, T., Freely dispersible Au@TiO2, Au@ZrO2, Ag@TiO2, and Ag@ZrO2 core–Shell nanoparticles: one–step synthesis, characterization, spectroscopy, and optical limiting properties, Langmuir (2003), 19, 3439–3445.
Uelzen, T. and Muller, J., Wettability enhancement by rough surfaces generated by thin film technology, Thin Solid Films. (2003), 434, 311–315.
Wang, C. Y., Liu, C. Y., Zheng, X., Chen, J. and Shen, T., The surface chemistry of hybrid nanometer–sized paeticles I. Photochemical deposition of gold on ultrafine TiO2 particles, Colloids Surfaces A: Physicochem. And Eng. Aspects (1998), 131, 271–280.
Wang, R.; Hashimoto, K.; Fujishma, A.; Chikuni, M.; Kojima E.; Kitamura, A.; Shimohigoshi, M. and Watanabe, T., Light induced amphiphilic surfaces, Nature (1997), 388, 431–432.
Wenzel, R. N., J. Phys. Colloid Chem. (1949), 53, 1466–1467.
Wu, S. X.; Ma, Z.; Qin, Y. N.; He, F.; Jia, L. S. and Zhang, Y. J., XPS study of copper doping TiO2 photocatalyst, Acta Phys. Chim. Sin. (2003), 19, 967–969.
Xu, N., Shi, Z., Fan, Y., Dong, J., Shi, J. and Hu, M. Z.–C., Effects of Particle Size of TiO2 on Photocatalytic Degradation of Methylene Blue in Aqueous Suspensions, Ind. Eng. Chem. Res. (1999), 38, 373–379.
Yu, J. G.; Zhao, X. J. and Zhao, Q. N., Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol–gel method, Thin Solid Film (2000), 379, 7–14.
Yu J.G. and Zhao X.J., Effect of substrates on the photocatalytic activity of nanometer TiO2 thin films, Materials Research Bulletin (2000), 35, 1293–1301.
Yildiz, A.; Lisesivdin, S. B.; Kasap, M. and Mardare, D., Non–adiabatic small polaron hopping conduction in Nb–doped TiO2 thin film, Physica. B, Condensed matter (2009), 404, 8–11, 1423–1426.
Yin, S.; Fujishiro, Y.; Wu, J.; Aki, M. and Sato, T., Synthesis and photocatalytic properties of fibrous titania by solvothermal reactions, J. Master. Proc. Tech. (2003), 137, 45–48.
Zhang, T., Oyama, T., Aoshima, A., Hidaka, H., Zhao, J. and Serpone, N., Photooxidative N–demethylation of Methylene Blue in Aqueous TiO2 Dispersions under UV Irradiation, J. Photochem. Photobiol., A (2001), 140, 163–172.
Zhao, X. F.; Meng, X. F.; Zhang, Z. H.; Liu, L. and Jia, D. Z., Preparation and photocatalytic activity of Pb–doped TiO2 thin films, J. Inorg. Mater. (2004), 19, 140–146.
Cojocaru, B.; Neatu, S.; Parvulescu, V. I.; Somoghi, V.; Petrea, N., Epure, G.; Alvaro, M. and Garcia, H., Synergism of Activated Carbon and Undoped and Nitrogen-doped TiO2 in the Photocatalytic Degradation of the Chemical Warfare Agents Soman, VX, and Yperite, ChemSusChem (2009), 427–436.
Ahmed, M. S. and Attia, Y. A., Aerogel materials for photocatalytic detoxification of cyanide istes in water, J. Non–crystalline Solids (1995), 186, 402–407.
Arabatzis, I. M.; Stergiopoulos, T.; Bernard, M. C.; Labou, D.; Neophytides, S. G. and Falaras, P., Silver–modified titanium dioxide thin films for efficient photodegradation of methyl orange, Appl. Catal., B–Environ. (2003), 42, 187–201.
Bamwenda, G. R.; Tsubota, S.; Kobayashi, T. and Haruta, M. J., Photoinduced hydrogen–production from an aqueous–solution of ethylene–glycol over ultrafine gold supported on TiO2, Photochem. Photobiol. A (1994), 77, 59–67.
Babapour, A.; Akhavan, O.; Azimirad R. and Moshfegh, A. Z., Physical characteristics of heat–treated nano–silvers dispersed in sol–gel silica matrix, Nanotechnology (2006), 17, 763–771.
Bischoff, B. L. and Anderson, M. A., Peptization process in the sol–gel preparation of porous anatase TiO2, Chem. Mater. (1995), 7, 1772–1778.
Bouabid, K.; Ihlal, A.; Amira, Y.; Sdaq, A.; Assabbane, A.; Ait–Ichou, Y.; Outzourhit, A.; Ameziane, E. L. and Nouet, G., Optical study of TiO2 thin films prepared by sol–gel, Ferroelectr. (2008), 372, 69–75.
Chopin, T.; Denis, S. and Fourre, P., US Patent (1992), 5149519.
Chrysicopoulou, P.; Davazoglou, D.; Trapalis, C. and Kordas, G., Optical properties of very thin (< 100nm) sol–gel TiO2 films, Thin Solid Films (1998), 323, 188–193.
Dibble, L. A. and Raupp, G. B. Fluidized–bed photocatalytic oxidation of trichloroethylene in contaminated airstreams, Environ. Sci. Technol. (1992), 26, 492–495.
Chang, J. A.; Vithal, M.; Baek, I. C. and Seok, S. I., Morphological and phase evolution of TiO2 nanocrystals prepared from peroxo titanate complex aqueous solution: Influence of acetic acid, J. Solid State Chem. (2009), 182, 749–756.
Galindo, C.; Jacques, P. and Kalt, A., Photooxidation of the phenylazonaphthol AO20 on TIO2: kinetic and mechanistic investigations, Chemosphere (2001), 45, 997–1005.
He, X.; Zhao, X. and Liu, B., Studies on a possible growth mechanism of silver nanoparticles loaded on TiO2 thin films by photoinduced deposition method, J. Non–Cryst. Solids (2008), 354, 1267–1271.
Jagadale, T. C.; Takale, S. P.; Sonawane, R. S.; Joshi, H. M. ; Patil, S. I.; Kale, B. B. and Ogale, S. B., N–Doped TiO2 Nanoparticle Based Visible Light Photocatalyst by Modified Peroxide Sol–Gel Method, J. Phys. Chem. C (2008), 112, 14595–14602.
Krylova, G. V.; Gnatyuk, Y. I.; Smirnova, N. P.; Eremenko, A. M. and Gun’ko, V. M., Ag nanoparticles deposited onto silica, titania, and zirconia mesoporous films synthesized by sol–gel template method, J. Sol-Gel Sci. Technol. (2009), 50, 216–228.
Li, C. H.; Hsieh, Y. H.; Chiu, W. T.; Liu, C. C. and Kao, C.L., Study on preparation and photocatalytic performance of Ag/TiO2 and Pt/TiO2 photocatalysts, Sep. Purif. Technol. (2007), 58, 148–151.
Li, J; Xu, J.; Dai, W. L. and Fan, K., Dependence of Ag deposition methods on the photocatalytic activity and surface state of TiO2 with twistlike helix structure, J. Phys. Chem. C (2009), 113, 8343–8349.
Lee, D. S. and Liu, T. K., Preparation of TiO2 sol using TiCl4 as a precursor, J. Sol–Gel Sci. Tech. (2002), 25, 121–136.
Miao, L.; Jin, P.; Kaneko, K.; Terai, A.; Nabatova–Gabain, N. and Tanemura, S., Preparation and characterization of polycrystalline anatase and rutile TiO2 thin films by rf magnetron sputtering, Appl. Surf. Sci. (2003), 212–213, 255–263.
Moulder, J. F.; Stickle, W. F.; Sobol, P. E. and Bomben, K. E., Handbook of X–ray Photoelectron Spectroscopy. Physical Electronics (1995).
Rigo, M.; Canu, P.; Angelin, L. and Valle, G. D., Kinetics of TiCl4 hydrolysis in a moist atmosphere, Ind. Eng. Chem. Res. (1998), 37, 1189–1195.
Rauf, M.A. and Ashraf, S. S., Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution, Chem. Eng. J. (2009), 151, 10–18.
Sonawane, R. S.; Kale, B. B. and Dongare, M. K., Preparation and photo–catalytic activity of Fe–TiO2 thin films prepared by sol–gel clip coating, Mater. Chem. Phys. (2004), 85, 52–57.
Senthilkumaar, S.; Porkodi, K.; Gomathi, R.; Maheswari, A. G. and Manonmani, N., Sol–gel derived silver doped nanocrystalline titania catalysed photodegradation of methylene blue from aqueous solution, Dyes Pigments (2006), 69, 22–30.
Sonawane, R. S.; Hegde, H. G. and Dongare, M. K., Preparation of titanium(iv) oxide thin–film photocatalyst by sol–gel dip coating, Mater. Chem. Phys. (2003), 77, 744–750.
Traversa, E.; Di Vona, M. L.; Nunziante, P.; Licoccia, S.; Sasaki, T. and Koshizaki, N., Sol–gel preparation and characterization of Ag–TiO2 nanocomposite thin films, J. Sol–Gel. Sci. Technol. (2000), 19, 733–736.
Wolf, A. and Schuth, F., A systematic study of the synthesis conditions for the preparation of highly active gold catalysts, Appl. Catal., A (2002), 226, 1–13.
Wang, J.; Zhao, H.; Liu, X.; Li, X.; Xu, P. and Han, X., Formation of Ag nanoparticles on water–soluble anatase TiO2 clusters and the activation of photocatalysis, Catal. Commun. (2009), 10, 1052–1056.
Weir, B. A. and Sundstrom, D. W., AIChE National Meeting (1989), San Francisco, Paper 52B.
Yu, J. G.; Zhao, X. J. and Zhao, Q. N., Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol–gel method, Thin Solid Film (2000), 379, 7–14.
Yu, J. G. and Zhao X. J., Effect of substrates on the photocatalytic activity of nanometer TiO2 thin films, Mater. Res. Bull. (2000), 35, 1293–1301.
Zhu, Y. F.; Zhang L.; Gao, C. and Cao, L., The synthesis of nanosized TiO2 powder using a sol–gel method with TiCl4 as a precursor, J. Mater. Sci. (2000), 35, 4049–4054.
Zhang, H. and Chen, G., Potent antibacterial activities of Ag/TiO2 nanocomposite powders synthesized by a one–pot sol–gel method, Environ. Sci. Technol. (2009), 43, 2905–2910.
Arabatzis, I. M.; Stergiopoulos, T.; Bernard, M. C.; Labou, D.; Neophytides, S. G. and Falaras, P., Silver–modified titanium dioxide thin films for efficient photodegradation of methyl orange, Appl. Catal., B–Environ. (2003), 42, 187–201.
Babapour, A.; Akhavan, O.; Azimirad R. and Moshfegh, A. Z., Physical characteristics of heat–treated nano–silvers dispersed in sol–gel silica matrix, Nanotechnology (2006), 17, 763–771.
Bamwenda, G. R.; Tsubota, S.; Kobayashi, T. and Haruta, M. J., Photoinduced hydrogen–production from an aqueous–solution of ethylene–glycol over ultrafine gold supported on TiO2, Photochem. Photobiol. A 1994, 77, 59–67.
Barmatov, E. B.; Pebalk, D. A. and Barmatova, M. V., Influence of silver nanoparticles on the phase behavior of side–chain liquid crystalline polymers, Langmuir (2004), 20, 10868–10871.
Bischoff, B. L. and Anderson, M. A., Peptization process in the sol–gel preparation of porous anatase TiO2, Chem. Mater. (1995), 7, 1772–1778.
Burda, C.; Chen, XB.; Narayanan, R. and El–Sayed, M., Photocatalytic degradation of azo dyes by nitrogen–doped TiO2 nanocatalysts, Chem. Rev. (2005), 105, 1025–1102.
Chopin, T.; Denis, S. and Fourre, P., US Patent 5 (1992), 149519.
Chrysicopoulou, P.; Davazoglou, D.; Trapalis, C. and Kordas, G., Optical properties of very thin (< 100nm) sol–gel TiO2 films, Thin Solid Films (1998), 323, 188–193.
Dibble, L. A. and Raupp, G. B., Fluidized–bed photocatalytic oxidation of trichloroethylene in contaminated airstreams, Environ. Sci. Technol. (1992), 26, 492–495.
Faraday, M., The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light Phil., Philos. Trans. R. Soc. London (1857), 147, 145–153.
Haruta, M., Size– and support–dependency in the catalysis of gold, Catal. Today (1997), 36, 153–166.
Kim, H. S.; Ryu, J. H.; Jose, B.; Lee, B. G.; Ahn, B. S. and Kang, Y. S., Formation of silver nanoparticles induced by poly(2,6–dimethyl–1,4–phenylene oxide), Langmuir (2001), 17, 5817–5820.
Krylova, G. V.; Gnatyuk, Y. I.; Smirnova, N. P.; Eremenko, A. M. and Gun’ko, V. M., Ag nanoparticles deposited onto silica, titania, and zirconia mesoporous films synthesized by sol–gel template method, J Sol–Gel Sci Technol (2009), 50, 216–228.
Li, J; Xu, J.; Dai, W. L. and Fan, K., Dependence of Ag deposition methods on the photocatalytic activity and surface state of TiO2 with twistlike helix structure
J. Phys. Chem. C (2009), 113, 8343–8349.
Li, C. H.; Hsieh, Y. H.; Chiu, W. T.; Liu, C. C. and Kao, C. L., Study on preparation and photocatalytic performance of Ag/TiO2 and Pt/TiO2 photocatalysts, Separation and Purification Technology (2007), 58, 148–151.
Link, S.; El–Sayed, M. A., Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles, J. Phys. Chem. B (1999), 103, 8410–8426.
Mishra,Y.K.; Mohapatra, S.; Kabiraj, D.; Mohanta, B.; Lalla, N.P.; Pivin, J.C. and Avasthi, D.K., Synthesis and characterization of Ag nanoparticles in silica matrix by atom beam sputtering, Scripta Materialia (2007), 56, 629–632.
Sakai, H.; Kanda, T.; Shibata, H.; Ohkubo, T. and Abe, M., Preparation of highly dispersed core/shell–type titania nanocapsules containing a single Ag nanoparticle, J. Am. Chem. Soc. (2006), 128, 4944–4945.
Salgueirino–Maceira, V.; Caruso, F. and Liz–Marzan, L. M., Coated colloids with tailored optical properties, J. Phys. Chem. B (2003), 107, 10990–10994.
Sahu, S. N.; Choudhury, R. K. and Jena, P., Nano–scale materials , Nova science publishers INC: Hauppauge (2006), 381–382.
Sato, T.; Yonezawa, Y.; Hada, H. and Gakkaishi, N. S., J. Soc. Photogr. Sci. Technol. Jpn. (Nippon Shashin Gakkaishi) (1988), 51, 122–134.
Sun, B. Y. and Chiu, D. T., Synthesis, loading, and application of individual nanocapsules for probing single–cell signaling, Langmuir (2004), 20, 4614–4620.
Turkevich, J.; Garton, G.; Stevenson, P. C., Colloidal gold part II, J. Colloid Sci. (1954), 9, 26–35.
Ung, T.; Liz–Marzan, L. M. and Mulvaney, P., Controlled method for silica coating of silver colloids. Influence of coating on the rate of chemical reactions, Langmuir (1998), 14, 3740–3748.
Wang, W.; Zhang, J.; Chen, F.; He, D. and Anpo, M., Preparation and photocatalytic properties of Fe3+–doped Ag@TiO2 core–shell nanoparticles, J. Colloid Interface Sci. (2008), 323, 182–186.
Yonezawa, T. and Toshima, N., Structure and catalysis of metal colloids, Hyomen (1996), 34, 426–438.
Wang, J.; Zhao, H.; Liu, X.; Li, X.; Xu, P. and Han, X., Formation of Ag nanoparticles on water–soluble anatase TiO2 clusters and the activation of photocatalysis, Catalysis Communications (2009), 10, 1052–1056.
Wolf, A. and Schuth, F., A systematic study of the synthesis conditions for the preparation of highly active gold catalysts, Appl. Catal., A (2002), 226, 1–13.
Xin, B. F.; Jing, L. Q.; Ren, Z. Y.; Wang, B. Q. and Fu, H. G., Effects of simultaneously doped and deposited ag on the photocatalytic activity and surface states of TiO2, J. Phys. Chem. B (2005), 109, 2805–2809.
Sclafani, A.; Mozzanege, M. N. and Herrmann, J. M., Influence of silver deposits on the photocatalytic activity of titania, J. Catal. 1997, 168, 117–120.
You, X. F.; Chen, F.; Zhang, J. L. and Anpo, M., A novel deposition precipitation method for preparation of Ag–loaded titanium dioxide, Catal. Lett. 2005, 102, 247–250.
Zhang, H. and Chen, G., Potent antibacterial activities of Ag/TiO2 nanocomposite powders synthesized by a one–pot sol–gel method, Environ. Sci. Technol. (2009), 43, 2905–2910.
Zheng, Y. H.; Chen, C. Q.; Zhan, Y. Y.; Lin, X. Y.; Zheng, Q. and Wei, K. M., Photocatalytic activity of Ag/ZnO heterostructure nanocatalyst: Correlation between structure and property, J. Phys. Chem. C 2008, 112, 10773–10777.
Babapour, A.; Akhavan, O.; Azimirad R. and Moshfegh, A. Z., Physical characteristics of heat–treated nano–silvers dispersed in sol–gel silica matrix, Nanotechnology (2006), 17, 763–771.
Bamwenda, G. R.; Tsubota, S.; Kobayashi, T. and Haruta, M. J., Photoinduced hydrogen–production from an aqueous–solution of ethylene–glycol over ultrafine gold supported on TiO2, Photochem. Photobiol. A 1994, 77, 59–67.
Chan, S.C. and Barteau, M.A., Preparation of Highly Uniform Ag/TiO2 and Au/TiO2 Supported Nanoparticle Catalysts by Photodeposition, Langmuir 2005, 21, 5588–5595
Einaga, H., Effect of silver deposition on TiO2 for photocatalytic oxidation of benzene in the gas phase, React. Kinet. Catal. Lett. (2006), 88, 357−362.
Hoffmann, M. R., Martin, S. T., Choi, W., and Bahnemann, D. W., Environmental Applications of Semiconductor Photocatalysis, Chem. Rev. (1995), 95, 69–96.
Iliev, V.; Tomova, D.; Todorovska, R.; Oliver, D.; Petrov, L.; Todorovsky, D. and Uzunova–Bujnova, M., Photocatalytic properties of TiO2 modified with gold nanoparticles in the degradation of oxalic acid in aqueous solution, Appl. Catal., A (2006), 313, 115−121.
Ibusuki, T., and Takeuchi, K., Removal of low concentration nitrogen oxides through photoassisted heterogeneous catalysis, J. Mol. Catal. (1994), 88, 93–102.
Iwase, A.; Kato, H. and Kudo, A., Nanosized Au particles as an efficient cocatalyst for photocatalytic overall water splitting, Catal. Lett. (2006), 108, 7–10.
Korzhak, A. V.; Ermokhina, N. I.; Stroyuk, A. L.; Bukhtiyarov, V. K.; Raevskaya, A. E.; Litvin, V. I.; Kuchmiy, S. Y.; Ilyin, V. G. and Manorik, P. A., Photocatalytic hydrogen evolution over mesoporous TiO2/metal nanocomposites, J. Photochem. Photobiol., A (2008), 198, 126–134.
Kim, S. B. and Hong, S. C., Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst, Appl. Catal., B–Environ. (2002), 35, 305–315.
Krylova, G. V.; Gnatyuk, Y. I.; Smirnova, N. P.; Eremenko, A. M. and Gun’ko, V. M., Ag nanoparticles deposited onto silica, titania, and zirconia mesoporous films synthesized by sol–gel template method, J Sol–Gel Sci Technol (2009), 50, 216–228.
Li, C. H.; Hsieh, Y. H.; Chiu, W. T.; Liu, C. C. and Kao, C. L., Study on preparation and photocatalytic performance of Ag/TiO2 and Pt/TiO2 photocatalysts, Sep. Purif. Technol. (2007), 58, 148–151.
Li, J; Xu, J.; Dai, W. L. and Fan, K., Dependence of Ag deposition methods on the photocatalytic activity and surface state of TiO2 with twistlike helix structure
J. Phys. Chem. C (2009), 113, 8343–8349.
Negishi, N.; Iyoda, T.; Hashimoto, K. and Fujishima, A., Preparation of transparent TiO2 thin–film photocatalyst and its photocatalytic activity, Chem. Lett. (1995), 9, 841–842.
Ma, C. M.; Ku, Y.; Kuo, Y. L.; Chou, Y. C. and Jeng, F. T., Effects of Silver on the Photocatalytic Degradation of Gaseous Isopropanol, Water, Air, Soil Pollut. (2009), 197, 313–321.
Quiller, R. G.; Benz, L.; Haubrich, J.; Colling, M. E. and Friend, C. M., Surface Chemistry of Organic Pollutants: Styrene, Ozone, and Water on TiO2(110), J. Phys. Chem. C (2009), 113, 2063–2070.
Ren, L.; Zeng, Y. P. and Jiang, D., Preparation, characterization and photocatalytic activities of Ag–deposited porous TiO2 sheets, Catal. Commun. (2009), 10, 645–649.
Sclafani, A.; Mozzanege, M. N. and Herrmann, J. M., Influence of silver deposits on the photocatalytic activity of titania, J. Catal. 1997, 168, 117–120.
Subramanian, V.; Wolf, E. E. and Kamat, P. V., Influence of metal/metal ion concentration on the photocatalytic activity of TiO2–Au composite nanoparticles, Langmuir (2003), 19, 469–474.
Wang, J.; Zhao, H.; Liu, X.; Li, X.; Xu, P. and Han, X., Formation of Ag nanoparticles on water–soluble anatase TiO2 clusters and the activation of photocatalysis, Catalysis Communications (2009), 10, 1052–1056.
Wolf, A. and Schuth, F., A systematic study of the synthesis conditions for the preparation of highly active gold catalysts, Appl. Catal., A 2002, 226, 1–13.
Xin, B. F.; Jing, L. Q.; Ren, Z. Y.; Wang, B. Q. and Fu, H. G., Effects of simultaneously doped and deposited ag on the photocatalytic activity and surface states of TiO2, J. Phys. Chem. B 2005, 109, 2805–2809.
Yamaguti, K. and Sato, S., Photolysis of water over metallized powdered titanium dioxide, J. Chem. Soc. Faraday Trans. I (1985), 81, 1237–1246.
Yu, J. C.; Tang, H. Y.; Yu, J.; Chan, H. C.; Zhang, L.; Xie, Y.; Wang, H. and Wong, S. P., Bactericidal and photocatalytic activities of TiO2 thin films prepared by sol–gel and reverse micelle methods, J. Photochem. Photobiol., A (2002), 153, 211–219.
You, X. F.; Chen, F.; Zhang, J. L. and Anpo, M., A novel deposition precipitation method for preparation of Ag–loaded titanium dioxide, Catal. Lett. 2005, 102, 247–250.
Zhao, D.; Sun, C. Y.; Chen, C. C.; Ma, W. H. and Zhao, J. C., Photochemical degradation of organic pollutants polybrominated diphenyl ether congeners and cyanuric acid, Progress in chemistry ( 2009), 21, 400–405.
Zheng, Y. H.; Chen, C. Q.; Zhan, Y. Y.; Lin, X. Y.; Zheng, Q. and Wei, K. M., Photocatalytic activity of Ag/ZnO heterostructure nanocatalyst: Correlation between structure and property, J. Phys. Chem. C 2008, 112, 10773–10777.
Zhang, H. and Chen, G., Potent antibacterial activities of Ag/TiO2 nanocomposite powders synthesized by a one–pot sol–gel method, Environ. Sci. Technol. (2009), 43, 2905–2910.
|