參考文獻 |
[1] S. Patel, K.K. Pant, “Selective production of hydrogen via oxidative steam reforming of methanol using Cu–Zn–Ce–Al oxide catalysts”, Chem. Eng. Sci. 62 (2007) 5436-5443.
[2] Y. Liu, T. Hayakawa, K. Suzuki, S. Hamakawa, T. Tsunoda, T. Ishii, M. Kumagai, “Highly active copper/ceria catalysts for steam reforming of methanol”, Appl. Catal. A: Gen. 223 (2002) 137-145.
[3] S. Patel, K.K. Pant, “Hydrogen production by oxidative steam reforming of methanol using ceria promoted copper-alumina catalysts”, Fuel processing Tech. 88 (2007) 825-832.
[4] S. Velu, K. Suzuki, M.P. Kapoor, F. Ohashi, T. Osaki, “Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts”, Appl. Catal. A: Gen. 213 (2001) 47-63.
[5] S. Velu, K. Suzuki, M. Okazaki, M.P. Kapoor, T. Osaki, F. Ohashi, “Oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts for the selective production of htdrogen for feul cells: catalyst characterization and performance evaluation”, J. Catal. 194 (2000) 373-384.
[6] P.H. Matter, D.J. Braden, U.S. Ozkan, “Steam reforming of methanol to H2 over nonreduced Zr-containing CuO/ZnO catalysts”, J. Catal. 223 (2004) 340-351.
[7] P.H. Matter, U.S. Ozkan, “Effect of pretreatment conditions on Cu/Zn/Zr-based catalysts for the steam reforming of methanol to H2”, J. Catal. 234 (2005) 463-475.
[8] J. Agrell, H. Birgersson, M. Boutonnet, I. Melián-Cabrera, R.M. Navarro, J.L.G. Fierro, “Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3”, J. Catal. 219 (2003) 389-403.
[9] X.R. Zhang, P. Shi, J. Zhao, M. Zhao, C. Liu, “Production of hydrogen for fuel cells by steam reforming of methanol on Cu/ZrO2/Al2O3 catalysts”, Fuels Furn. 83 (2003) 183-192.
[10] D. Bianchi, T. Chafik, M. Khalfallah, S.J. Teichner, “Intermediate species on zirconia supported methanol aerogel catalysts V. Adsorption of methanol”, Appl. Catal. A: Gen. 123 (1995) 89-110.
[11] G. Fierro, M.L. Jacono, M. Inversi, P. Porta, F. Cioci, R. Lavecchia, “Study of the reducibility of copper in CuO---ZnO catalysts by temperature-programmed reduction”, Appl. Catal. A: Gen. 137 (1996) 327-348.
[12] T. Fujitani, J. Nakamura, “The chemical modification seen in the Cu/ZnO methanol synthesis catalysts”, Appl. Catal. A: Gen. 191 (2000) 111-129.
[13] 黃罡,「甲醇蒸汽重組觸媒設計CuO/ZnO/CeO2/ZrO2/Al2O3」,國立中央大學,化學工程與材料工程研究所,碩士論文,民國97年。
[14] T. Shishido, M. Yamamoto, D. Li, Y. Tian, H. Morioka, M. Honda, T. Sano, K. Takehira, “Water-gas shift reaction over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation”, Appl. Catal. A: Gen. 303 (2006) 62-217.
[15] M. Bowker, R.A. Hadden, H. Houghton, J.N.K. Hyland, K.C. Waugh, “The mechanism of methanol synthesis on copper/zinc oxide/alumina catalysts” J. Catal. 109 (1988) 263-273.
[16] M.M. Günter, T. Ressler, R.E. Jentoft, B. Bems, “Redox behavior of copper oxide/zinc oxide catalysts in the steam reforming of methanol studied by in situ X-ray diffraction and absorption spectroscopy”, J. Catal. 203 (2001) 133-149.
[17] S. Fukahori, H. Koga, T. Kitaoka, A. Tomoda, R. Suzuki, H. Wariishi, “Hydrogen production from methanol using a SiC fiber-containing paper composite impregnated with Cu/ZnO catalyst”, Appl. Catal. A: Gen. 310 (2006) 138-144.
[18] P. Kurr, I. Kasatkin, F. Girgsdies, A. Trunschke, R. Schlogl, T. Ressler, “Microstructural characterization of Cu/ZnO/Al2O3 catalysts for methanol steam reforming-A comparitive study“, Appl. Catal. A: Gen. 348 (2008) 153-164.
[19] M. Turco, G. Bagnasco, U. Costantino, F. Marmottini, T. Montanari, G. Ramis, G. Busca, “Production of hydrogen from oxidative steam reforming of methanol II. Catalytic activity and reaction mechanism on Cu/ZnO/Al2O3 hydrotalcite-derived catlaysts“, J. Catal. 228 (2004) 56-65.
[20] S. Patel, K.K. Pant, “Kinetic modeling of oxidative steam reforming of methanol over Cu/ZnO/CeO2/Al2O3 catalysts”, Appl. Catal. A: Gen. 356 (2009) 189-200.
[21] L. Alejo, R. Lago, M.A. Pena, J.L.G. Fierro, “Partial oxidation of methanol to produce hydrogen over Cu-Zn-based catalyst”, Appl. Catal. A: Gen. 162 (1997) 281-297.
[22] I. Eswaramoorthi, V. Sundaramurthy, A.K. Dalai, “Partial oxidation of methanol for hydrogen production over carbon nanotubes supported Cu-Zn catalysts”, Appl. Catal. A: Gen. 313 (2006) 22-34.
[23] Z. Wang, J. Xi, W. Wang, G. Lu, “Selective production of hydrogen by partial oxidation of methanol over Cu/Cr catalysts”, J. Mol. Catal. A: Chem. 191 (2003) 123-134.
[24] S. Rabe, F. Vogel, “A thermogravimetric study of the partial oxidation of methanol for hydrogen production over a Cu/ZnO/Al2O3 catalysts“, Appl. Catal. B: Environ. 84 (2008) 827-834.
[25] J. Agrell, M. Boutonnet, J. L.G. Fierro, “Production of hydrogen from methanol over binary Cu/ZnO catalysts Part II. Catalytic and reaction pathways”, Appl. Catal. A: Gen. 253 (2003) 213-223.
[26] I.E.Wachs, R.J. Madix, “The selective oxidation of CH3OH to H2CO on a copper (110) catalyst”, J. Catal. 53 (1978) 208-227
[27] T.J. Huang, S.L. Chren, “Kinetics of partial oxidation of methanol over a copper-zinc catalysts”, Appl. Catal. 40 (1988) 43-52.
[28] L.A. Espinosa, R.M. Lago, M.A. pena, J.L.G. Fierro, “Mechanistic aspects of hydrogen production by partial oxidation of methanol over Cu/Zn catalysts”. Topics in Catal. 22 (2003) 245-251.
[29] A.P. Meyer, J.A.S. Bett, G. Vartanian, R.A. Sederquist, “Parametric analysis of 1.5 kW methanol-fuel cell power plant designs”, US Army Technical Report DAAK70-77-C-0195, 1978.
[30] E. Santacesaria, S. Carrá, “Cinetica dello steam reforming del metanolo”, Riv. Combust. 32 (1978) 227-232.
[31] J.C. Amphlett, M.J. Evans, R.F. Mann, R.D. Weir, “Hydrogen production by the catalytic steam reforming of methanol. Part 2: Kinetics of methanol decomposition using Girdler G66B catalyst”, Can. J. Chem. 63 (1985) 605-611.
[32] J.C. Amphlett, M.J. Evans, R.F. Mann, R.D. Weir, “Hydrogen production by the catalytic steam reforming of methanol. Part 3: Kinetics of methanol decomposition using Girdler C18HC catalyst”, Can. J. Chem. 66 (1988) 950-956.
[33] R. Dümpelmann, “Kinetische untersuchungen des methanol reforming und der wassergaskonvertierungsreaktion in einem konsentrationgeregelten kreislaufreaktor”, Ph.D. Dissertation, Eidgenössischen Technischen Hochschule, Zürich, 1992.
[34] C.J. Jiang, D.L. Trimm, M.S. Wainwright, N.W. Cant, “Kinetic study of steam reforming of methanol of copper-based catalysts”, Appl. Catal. A: Gen. 93 (1993) 245-255.
[35] J.C. Amphlett, R.F. Mann, B.A. Peppley, “The steam-reforming of methanol: mechanism and kinetics compared to the methanol synthesis process”, in: H.E. Curry-Hyde, R.F. Howe (Eds.), Studies in Surface Science and Catalysis, vol. 81, Elsevier, Amsterdam, 1994, pp. 409-412, ISBN 0-444-89535-3.
[36] G. Liu, D. Willcox, M. Garland, and H.H. Kung, “The role of CO2 in methanol synthesis on Cu-Zn oxide: An isotope labeling study”, J. Catal. 96 (1985) 251-260.
[37] G.C. Chinchen, P.J. Denny, D.G. Parker, M.S. Spencer, D.A. Whan, “Mechanism of methanol synthesis from CO2/CO/H2 mixtures over copper/zinc oxide/alumina catalysts: Use of 14C-labelled reactions”, Appl. Catal. 30 (1987) 333-338.
[38] N.E. Vanderborgh, B.E. Goodby, T.E. Springer, “Oxygen exchange reactions during methanol steam reforming”, in: Proceedings of the 32nd International Power Sources Symposium, 1986, pp. 623-628.
[39] K.C. Waugh, “Methanol synthesis”, Catal. Today 15 (1992) 51-75.
[40] B.A. Peppley, J.C. Amphlett, L.M. Kearns, R.F. Mann, “Methanol-steam reforming on Cu/ZnO/Al2O3. Part 1: the reaction network”, Appl. Catal. A: Gen. 179 (1999) 21-29.
[41] J.K. Lee, J.B. Ko, D.H. Kim, “Methanol steam reforming over Cu/ZnO/Al2O3 catalyst: kinetics and effectiveness factor”, Appl. Catal. A: Gen. 278 (2004) 25-35.
[42] H. Purnama, T. Ressler, R.E. Jentoft, H. Soerijanto, R. Schlögl, R. Schomäcker, “CO formation/selectivity for steam reforming of methanol with a commercial CuO/ZnO/Al2O3 catalyst”, Appl. Catal. A: Gen. 259 (2004) 83-94.
[43] S.G. Neophytides, A.J. Marchi, G.F. Froment, “Methanol synthesis by means of diffuse reflectance infrared Fourier transform and temperature-programmed reaction spectroscopy”, Appl. Catal. A: 86 (1992) 45-64.
[44] G.J. Millar, C.H. Rochester, K.C. Waugh, “Infrared study of methyl formate and formaldehyde adsorption on reduced and oxidised silica-supported copper catalysts”, J. Chem. Soc. Faraday Trans. 87 (17) (1991) 2785-2793.
[45] G.J. Millar, C.H. Rochester, K.C. Waugh, “Infrared study of the adsorption of methanol on oxidised and reduced Cu/SiO2 catalysts”, J. Chem. Soc., Faraday Trans. 87 (17) (1991) 2795-2804.
[46] K.M. Minachev, K.P. Kotyaev, G.I. Lin, A.Y. Rozovskii, “Temperature-programmed surface reactions of methanol on commercial Cu-containing catalysts”, Catal. Lett. 3 (1989) 299-307.
[47] B.A. Peppley, J.C. Amphlett, L.M. Kearns, R.F. Mann, “Methanol steam reforming on Cu/ZnO/Al2O3 catalysts. Part 2. A comprehensive kinetic model”, Appl. Catal. A: Gen. 179 (1999) 31-49.
[48] B. Frank, F.C. Jentoft, H. Soerijanto, J. Kröhnert, R. Schlögl, R. Schomäcker, “Steam reforming of methanol over copper-containing catalysts: Influence of support material on microkinetics”, J. Catal. 246 (2007) 177-192.
[49] J. Skrzypek, J. Sloczynski, S. Ledakowicz, “Methanol synthesis”, ISBN 83-01-11490-8, Polish Scientific Publishers, Warsaw, 1994.
[50] J. Nakamura, I. Nakamura, T. Uchijima, Y. Kanai, T. Watanabe, M. Saito, T. Fujitani, “A surface science investigation of methanol synthesis over a Zn-deposited polycrystalline Cu surface”, J. Catal. 160 (1996) 65-75.
[51] R.O. Idem, N.N. Bakhshi, Ind. Eng. Chem. Res. 33 (1994) 2056.
[52] T. Fujitani, M. Saito, Y. Kanai, T. Kakumoto, T. Watanabe, “The role of metal oxides in promoting a copper catalyst for methanol synthesis”, Catal. Lett. 25 (1994) 271-276.
[53] H. Oguchi, H. Kanai, K. Utani, Y. Matsumura, S. Imamura, “Cu2O as active species in the steam reforming of methanol by CuO/ZrO2 catalysts”, Appl. Catal. A: Gen. 293 (2005) 64-70.
[54] H. Oguchi, T. Nishiguchi, T. Matsumoto, H. Kanai, K. Utani, Y. Matsumura, S. Imamura, “Steam reforming of methanol over Cu/CeO2/ ZrO2 catalysts”, Appl. Catal. A: Gen. 281 (2005) 69-73.
[55] T.L. Reitz, P.L. Lee, K.F. Czaplewski, L.C. Lang, K.E. Popp, H.H. Kung, “Time-resolved XANES Investigation of CuO/ZnO in the oxidative methanol reforming reaction”, J. Catal. 199 (2001) 193-201.
[56] M. Turco, G. Bagnasco, U. Costantino, F. Marmottini, T. Montanari, G. Ramis, G. Busca, “Production of hydrogen from oxidative steam reforming of methanol I. Preparation and characterization of Cu/ZnO/Al2O3 catlaysts from a hydrotalcite-like LDH precursor“, J. Catal. 228 (2004) 43-55.
[57] M. Turco, G. Bagnasco, C. Cammarano, P. Senese, U. Costantino, M. Sisani, “ Cu/ZnO/Al2O3 catalysts for oxidative steam reforming of methanol: The role of Cu and the dispersing oxide matrix”, Appl. Catal. B: Enviro. 77 (2007) 46-57.
[58] K. Geissler, E. Newson, F. vogel, T.B. Truong, P. Hottinger, A. Wokaum, “Autothermal methanol reforming for hydrogen production in fuel cell applications”, Phys. Chem. Chem. Phys, 3 (2001) 289-293.
[59] J.P. Breen, F.C. Meunier, J.R.H. Ross, “Mechanistic aspects of the steam reforming of methanol over a CuO/ZnO/ZrO2/Al2O3 catalysts”, Chem. Commun. (1999) 2247-2248.
[60] S. Patel, K.K. Pant, “Influence of preparation method on performance of Cu(Zn)(Zr)-alumina catalysts for the hydrogen production via steam reforming of methanol”, J Porous Mater. 13 (2006) 373-378.
[61] Y. Okamoto, K. Fukino, T. Imanaka, S. Teranishi, J. Phys. Chem. 87 (1983) 3740.
[62] K.T. Jung, A.T. Bell, “Effects of zirconia phase on the synthesis of methanol over zirconia-supported copper”, Catal. Lett. 80 (2002) 63-68.
[63] D. Bianchi, T. Chafik, M. Khalfallah, S.J. Teichner, “Intermediate species on zirconia supported methanol aerogel catalysts: IV. Adsorption of carbon dioxide”, Appl. Catal. A: Gen. 112 (1994) 219-235.
[64] M. Pijolat, M. Prin, M. Soustelle, “Thermal stability of doped ceria: experiment and modeling”, J. Chem. Soc., Faraday Trans. 91 (1995) 3941-3948.
[65] W. Liu, M. Flytzani-Stephanopoulos, “Total oxidation of carbon monoxide and methane over transition metal fluorite oxide composite catalysts: I. Catalyst composition and activity”, J. Catal. 153 (1995) 304-316.
[66] W. Liu, M. Flytzani-Stephanopoulos, “Total oxidation of carbon-monoxide and methane over transition metal fluorite oxide composite catalysts: II. Catalyst characterization and reaction-kinetics”, J. Catal. 153 (1995) 317-332.
[67] M. Fernández-García, E. Gómez Rebollo, A. Guerrero Ruiz, J.C. Conesa, J. Soria, “Influence of ceria on the dispersion and reduction/oxidation behaviour of alumina-supported copper catalysts”, J. Catal. 172 (1997) 146-159.
[68] 黃振瑋,「CuO/Ce1-xSnxO2觸媒於富氫中CO的選擇性氧化反應研究」,國立中央大學,化學工程與材料工程研究所,碩士論文,民國94年。
[69] 張煒謙,「CuO/Ce1-xZrxO2觸媒於富氫中CO的選擇性氧化反應研究」,國立中央大學,化學工程與材料工程研究所,碩士論文,民國95年。
[70] 王榕蔓,「CuO/Ce1-xSnxO2-Al2O3觸媒於富氫中CO的選擇性氧化反應研究」,國立中央大學,化學工程與材料工程研究所,碩士論文,民國96年。
[71] J. Papavasiliou, G. Avgouropoulos, T. Ioannides, “Combined steam reforming of methanol over Cu–Mn spinel oxide catalysts”, J. Catal. 251 (2007) 7-20.
[72] J. Papavasiliou, G. Avgouropoulos, T. Ioannides, “In situ combustion synthesis of structured Cu-Ce-O and Cu-Mn-O catalysts for the production and purification of hydrogen”, Appl. Catal. B: Env. 66 (2006) 168-174.
[73] T. Umegaki, A. Masuda, K. Omata, M. Yamada, “Development of a high performance Cu-based ternary oxide catalysts for oxidative steam reforming of methanol using an artificial neural network”, Appl. Catal. A: Gen. 351 (2008) 210-216.
|