博碩士論文 963204027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.144.255.116
姓名 張丞鈞(Cheng-chun Chang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 甲醇氧化/蒸汽重組複合式反應觸媒之設計-CuO/ZnO/CeO2/ZrO2/Al2O3
(Oxidative steam reforming of methanol over CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts)
相關論文
★ Ag/Mg2AlO-hydrotalcite觸媒於α,β-不飽和醛選擇性氫化反應之研究★ 貴金屬對CuO/ZnO/Al2O3觸媒於甲醇部分氧化/蒸汽重組複合式反應的影響
★ Au觸媒於硝基苯氫化反應及硝基苯乙烯選擇性氫化反應之研究★ 苯於CuO/Ce0.9-xZr0.1MnxO2觸媒 之全氧化反應研究
★ 化學還原法製備Ag/Mg2AlO觸媒之研究-α,β-不飽和醛選擇性氫化反應★ 苯於Ag/Ce0.9-xZr0.1MnxO2觸媒之全氧化反應研究
★ 甲醇蒸汽重組產氫觸媒之設計★ CH4+CO2於ZrO2/SiO2與La2O3/Al2O3負載式鉑觸媒之重組反應研究
★ 以化學還原/共沉澱法製備Cu/ZrO2/metal oxide觸煤應用於CO2+H2合成甲醇反應之研究★ CuB超細合金觸媒之製備與催化性質探討
★ 負載式CoB非晶態合金觸媒製備與催化性質探討★ CuB系列觸媒於甲酸甲酯氫解及一段式甲醇合成法之研究
★ Ni/Mg-Al-O觸媒於CH4/CO2重組反應之研究★ 負載式CuB合金觸媒製備與催化性質探討
★ CH4/CO2於CeO2氧化物與CexZr1-xO2共氧化物負載式Pt觸媒之重組反應研究★ 奈米NiB、CoB非晶態合金觸媒於檸檬醛選擇氫化反應之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 複合式甲醇蒸汽重組反應(OSRM),一般觸媒成分以CuO/ZnO/Al2O3為主,有研究者指出添加CeO2、ZrO2可提升觸媒的性能。雖然許多研究者對CeO2與ZrO2所扮演的角色做了不同的闡述,但觸媒成分比例探討的範圍是在較低CuO負載量及較高Al2O3含量的成分下做探討,不符合實際應用。本研究以商業觸媒G66B(CuO/ZnO/Al2O3 = 30/60/10)成份作為參考,以共沉澱法製備不同比例的CuO/ZnO/CeO2/ZrO2/Al2O3觸媒,進行OSRM反應,探討CeO2、ZrO2、Al2O3及CuO負載量對OSRM反應的影響,以期設計OSRM反應的理想成份觸媒。
  CeO2可增加CuO、ZnO的無序度及增進觸媒還原能力,但對反應活性為負面效果。ZrO2可提升觸媒的分散性及還原能力,增加觸媒零價銅表面積及表面一價銅的百分比,ZrO2添加必須在不過量取代ZnO時方有明顯的促進效果,觸媒理想的CuO/ZnO比值應小於0.8,添加10~20 wt% ZrO2,CuO/ZnO/Al2O3(20/70/10)觸媒的CuO/ZnO比值由0.29增至0.4,CuO/ZnO/Al2O3(30/60/10)觸媒的CuO/ZnO比值則由0.5增至0.75,皆能有效的促進觸媒活性,CuO/ZnO/Al2O3(40/50/10)觸媒引入ZrO2,CuO/ZnO比值大於0.8,觸媒活性反下降。Al2O3可增加觸媒的無序度,但降低觸媒的還原能力,且抑制銅裸露於觸媒表面,減少觸媒的活性位置,對反應活性為負面影響,適當引入量應小於10 wt%。
  不同CuO負載量觸媒中,CuO/ZnO/Al2O3(40/50/10)觸媒有最佳活性,其CuO/ZnO比值為0.8,引入10 wt% ZrO2,CuO/ZnO比值大於0.8,對活性的促進效果無法顯現,但能增進觸媒的穩定,CuO/ZnO/ZrO2/Al2O3(40/40/10/10)仍為一理想比例觸媒。
摘要(英) The oxidative steam reforming of methanol (OSRM) was usually studied over CuO/ZnO/Al2O3-based catalysts. Numerous researchers announced that introducing CeO2 and ZrO2 could improve the performance of catalysts. Previous studies have reported the adventages of CeO2 and ZrO2 under low loading amount of CuO or high amount of Al2O3, their composition was limited. In this research, commercial catalysts G66B (Nisson-Gridler) with weight ratio of 30/60/10 (CuO/ZnO/Al2O3) was used as a starting reference for designing CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts which were prepared by co-precipitation method for OSRM.
Introducing CeO2 improved the dispersions of CuO and ZnO and increased the reducibility of catalysts; however CeO2 has a negative effect on the OSRM reaction. ZrO2 not only increased the dispersions, reducibility and Cu0 surface area of catalysts but also induced Cu+ formation. Only if CuO/ZnO ratio of catalysts smaller than 0.8, the advantage of ZrO2 can be revealed. Introducing 10~20 wt% ZrO2 increased CuO/ZnO ratio of CuO/ZnO/Al2O3 (20/70/10) catalyst from 0.29 to 0.4 and CuO/ZnO/Al2O3 (30/60/10) catalyst from 0.5 to 0.75, the activity of catalysts were promoted effectively. Nevertheless introducing ZrO2 into CuO/ZnO/Al2O3 (40/50/10) catalyst increased the CuO/ZnO ratio to exceed 0.8 instead inhibited the activity of catalyst. Al2O3 enhanced the dispersions of catalysts but reduced the reducibility and restraind copper exposing to the surface of catalysts therefore decreased the active site. Al2O3 has a negative effect to the reaction activity; the adaptable introducing amount should be less than 10 wt%.
CuO/ZnO/Al2O3 (40/50/10) catalyst showed best activity. Introducing 10 wt% ZrO2 into CuO/ZnO/Al2O3 (40/50/10) catalyst increased the CuO/ZnO ratio to exceed 0.8 therefore the advantage of ZrO2 to the activity of catalyst could not be revealed but the stability of catalyst was improved, consquently CuO/ZnO/ZrO2/Al2O3 (40/40/10/10) catalyst was considered to be an ideal catalyst.
關鍵字(中) ★ 氧化鈰
★ 銅基觸媒
★ 氧化鋯
★ 甲醇氧化/複合式蒸汽重組反應
關鍵字(英) ★ Oxidative steam reforming of methanol
★ Cerium oxide
★ copper catalyst
★ Zirconium oxide
論文目次 摘 要 i
Abstract ii
誌 謝 iv
目 錄 v
圖 目 錄 vii
表 目 錄 x
第一章 緒 論 1
第二章 文獻回顧 3
2-1 甲醇產氫的方法 4
2-2 甲醇產氫的反應路徑 5
2-2-1 甲醇部分氧化反應(POM) 5
2-2-2 甲醇部分氧化(POM)的反應路徑 6
2-2-3 甲醇蒸汽重組反應(SRM) 7
2-2-4 甲醇蒸汽重組(SRM)的反應路徑 10
2-2-5 複合式甲醇蒸汽重組反應(OSRM) 16
2-2-6 複合式甲醇蒸汽重組(OSRM)的反應路徑 19
2-3 引入ZrO2對反應的影響 20
2-3-1 引入ZrO2對反應活性的影響 21
2-3-2 引入ZrO2對觸媒穩定性的影響 24
2-3-3 引入ZrO2對觸媒實用性的影響 25
2-4 引入CeO2對反應的影響 25
2-4-1 CeO2的特性 25
2-4-2 引入CeO2對反應活性的影響 27
2-4-3引入CeO2對CO濃度的影響 29
2-4-4 引入CeO2對觸媒穩定性的影響 30
2-5 其他相關觸媒之研究與發展 30
第三章 實驗方法與設備 34
3-1 CuO/ZnO/CeO2/ZrO2/Al2O3觸媒之製備 34
3-2 觸媒性質鑑定 36
3-2-1 比表面積測定(BET) 36
3-2-2 X-射線繞射分析(XRD) 37
3-2-3 X-射線光電子光譜(XPS) 37
3-2-4 氫-程溫還原(H2-TPR) 38
3-2-5 銅表面積測量TPR法 39
3-3 複合式甲醇蒸汽重組反應活性測試 42
3-4 轉化率與選擇率之計算 45
3-5 實驗藥品及氣體 45
第四章 結果與討論 47
4-1觸媒基本性質鑑定 48
4-2 觸媒活性測試與探討 48
4-2-1 引入不同比例CeO2/ZrO2對觸媒的影響 49
4-2-2不同ZnO/CeO2比例對觸媒的影響 60
4-2-3不同ZnO/ZrO2比例對觸媒的影響 67
4-2-4不同ZnO/Al2O3比例對觸媒的影響 74
4-2-5不同CuO/ZnO比例對觸媒的影響 84
4-2-6添加ZrO2對CuO/ZnO/Al2O3(40/50/10)觸媒的影響 94
4-3觸媒穩定性測試 99
第五章 結 論 102
總 結 103
參考文獻 104
參考文獻 [1] S. Patel, K.K. Pant, “Selective production of hydrogen via oxidative steam reforming of methanol using Cu–Zn–Ce–Al oxide catalysts”, Chem. Eng. Sci. 62 (2007) 5436-5443.
[2] Y. Liu, T. Hayakawa, K. Suzuki, S. Hamakawa, T. Tsunoda, T. Ishii, M. Kumagai, “Highly active copper/ceria catalysts for steam reforming of methanol”, Appl. Catal. A: Gen. 223 (2002) 137-145.
[3] S. Patel, K.K. Pant, “Hydrogen production by oxidative steam reforming of methanol using ceria promoted copper-alumina catalysts”, Fuel processing Tech. 88 (2007) 825-832.
[4] S. Velu, K. Suzuki, M.P. Kapoor, F. Ohashi, T. Osaki, “Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts”, Appl. Catal. A: Gen. 213 (2001) 47-63.
[5] S. Velu, K. Suzuki, M. Okazaki, M.P. Kapoor, T. Osaki, F. Ohashi, “Oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts for the selective production of htdrogen for feul cells: catalyst characterization and performance evaluation”, J. Catal. 194 (2000) 373-384.
[6] P.H. Matter, D.J. Braden, U.S. Ozkan, “Steam reforming of methanol to H2 over nonreduced Zr-containing CuO/ZnO catalysts”, J. Catal. 223 (2004) 340-351.
[7] P.H. Matter, U.S. Ozkan, “Effect of pretreatment conditions on Cu/Zn/Zr-based catalysts for the steam reforming of methanol to H2”, J. Catal. 234 (2005) 463-475.
[8] J. Agrell, H. Birgersson, M. Boutonnet, I. Melián-Cabrera, R.M. Navarro, J.L.G. Fierro, “Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3”, J. Catal. 219 (2003) 389-403.
[9] X.R. Zhang, P. Shi, J. Zhao, M. Zhao, C. Liu, “Production of hydrogen for fuel cells by steam reforming of methanol on Cu/ZrO2/Al2O3 catalysts”, Fuels Furn. 83 (2003) 183-192.
[10] D. Bianchi, T. Chafik, M. Khalfallah, S.J. Teichner, “Intermediate species on zirconia supported methanol aerogel catalysts V. Adsorption of methanol”, Appl. Catal. A: Gen. 123 (1995) 89-110.
[11] G. Fierro, M.L. Jacono, M. Inversi, P. Porta, F. Cioci, R. Lavecchia, “Study of the reducibility of copper in CuO---ZnO catalysts by temperature-programmed reduction”, Appl. Catal. A: Gen. 137 (1996) 327-348.
[12] T. Fujitani, J. Nakamura, “The chemical modification seen in the Cu/ZnO methanol synthesis catalysts”, Appl. Catal. A: Gen. 191 (2000) 111-129.
[13] 黃罡,「甲醇蒸汽重組觸媒設計CuO/ZnO/CeO2/ZrO2/Al2O3」,國立中央大學,化學工程與材料工程研究所,碩士論文,民國97年。
[14] T. Shishido, M. Yamamoto, D. Li, Y. Tian, H. Morioka, M. Honda, T. Sano, K. Takehira, “Water-gas shift reaction over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation”, Appl. Catal. A: Gen. 303 (2006) 62-217.
[15] M. Bowker, R.A. Hadden, H. Houghton, J.N.K. Hyland, K.C. Waugh, “The mechanism of methanol synthesis on copper/zinc oxide/alumina catalysts” J. Catal. 109 (1988) 263-273.
[16] M.M. Günter, T. Ressler, R.E. Jentoft, B. Bems, “Redox behavior of copper oxide/zinc oxide catalysts in the steam reforming of methanol studied by in situ X-ray diffraction and absorption spectroscopy”, J. Catal. 203 (2001) 133-149.
[17] S. Fukahori, H. Koga, T. Kitaoka, A. Tomoda, R. Suzuki, H. Wariishi, “Hydrogen production from methanol using a SiC fiber-containing paper composite impregnated with Cu/ZnO catalyst”, Appl. Catal. A: Gen. 310 (2006) 138-144.
[18] P. Kurr, I. Kasatkin, F. Girgsdies, A. Trunschke, R. Schlogl, T. Ressler, “Microstructural characterization of Cu/ZnO/Al2O3 catalysts for methanol steam reforming-A comparitive study“, Appl. Catal. A: Gen. 348 (2008) 153-164.
[19] M. Turco, G. Bagnasco, U. Costantino, F. Marmottini, T. Montanari, G. Ramis, G. Busca, “Production of hydrogen from oxidative steam reforming of methanol II. Catalytic activity and reaction mechanism on Cu/ZnO/Al2O3 hydrotalcite-derived catlaysts“, J. Catal. 228 (2004) 56-65.
[20] S. Patel, K.K. Pant, “Kinetic modeling of oxidative steam reforming of methanol over Cu/ZnO/CeO2/Al2O3 catalysts”, Appl. Catal. A: Gen. 356 (2009) 189-200.
[21] L. Alejo, R. Lago, M.A. Pena, J.L.G. Fierro, “Partial oxidation of methanol to produce hydrogen over Cu-Zn-based catalyst”, Appl. Catal. A: Gen. 162 (1997) 281-297.
[22] I. Eswaramoorthi, V. Sundaramurthy, A.K. Dalai, “Partial oxidation of methanol for hydrogen production over carbon nanotubes supported Cu-Zn catalysts”, Appl. Catal. A: Gen. 313 (2006) 22-34.
[23] Z. Wang, J. Xi, W. Wang, G. Lu, “Selective production of hydrogen by partial oxidation of methanol over Cu/Cr catalysts”, J. Mol. Catal. A: Chem. 191 (2003) 123-134.
[24] S. Rabe, F. Vogel, “A thermogravimetric study of the partial oxidation of methanol for hydrogen production over a Cu/ZnO/Al2O3 catalysts“, Appl. Catal. B: Environ. 84 (2008) 827-834.
[25] J. Agrell, M. Boutonnet, J. L.G. Fierro, “Production of hydrogen from methanol over binary Cu/ZnO catalysts Part II. Catalytic and reaction pathways”, Appl. Catal. A: Gen. 253 (2003) 213-223.
[26] I.E.Wachs, R.J. Madix, “The selective oxidation of CH3OH to H2CO on a copper (110) catalyst”, J. Catal. 53 (1978) 208-227
[27] T.J. Huang, S.L. Chren, “Kinetics of partial oxidation of methanol over a copper-zinc catalysts”, Appl. Catal. 40 (1988) 43-52.
[28] L.A. Espinosa, R.M. Lago, M.A. pena, J.L.G. Fierro, “Mechanistic aspects of hydrogen production by partial oxidation of methanol over Cu/Zn catalysts”. Topics in Catal. 22 (2003) 245-251.
[29] A.P. Meyer, J.A.S. Bett, G. Vartanian, R.A. Sederquist, “Parametric analysis of 1.5 kW methanol-fuel cell power plant designs”, US Army Technical Report DAAK70-77-C-0195, 1978.
[30] E. Santacesaria, S. Carrá, “Cinetica dello steam reforming del metanolo”, Riv. Combust. 32 (1978) 227-232.
[31] J.C. Amphlett, M.J. Evans, R.F. Mann, R.D. Weir, “Hydrogen production by the catalytic steam reforming of methanol. Part 2: Kinetics of methanol decomposition using Girdler G66B catalyst”, Can. J. Chem. 63 (1985) 605-611.
[32] J.C. Amphlett, M.J. Evans, R.F. Mann, R.D. Weir, “Hydrogen production by the catalytic steam reforming of methanol. Part 3: Kinetics of methanol decomposition using Girdler C18HC catalyst”, Can. J. Chem. 66 (1988) 950-956.
[33] R. Dümpelmann, “Kinetische untersuchungen des methanol reforming und der wassergaskonvertierungsreaktion in einem konsentrationgeregelten kreislaufreaktor”, Ph.D. Dissertation, Eidgenössischen Technischen Hochschule, Zürich, 1992.
[34] C.J. Jiang, D.L. Trimm, M.S. Wainwright, N.W. Cant, “Kinetic study of steam reforming of methanol of copper-based catalysts”, Appl. Catal. A: Gen. 93 (1993) 245-255.
[35] J.C. Amphlett, R.F. Mann, B.A. Peppley, “The steam-reforming of methanol: mechanism and kinetics compared to the methanol synthesis process”, in: H.E. Curry-Hyde, R.F. Howe (Eds.), Studies in Surface Science and Catalysis, vol. 81, Elsevier, Amsterdam, 1994, pp. 409-412, ISBN 0-444-89535-3.
[36] G. Liu, D. Willcox, M. Garland, and H.H. Kung, “The role of CO2 in methanol synthesis on Cu-Zn oxide: An isotope labeling study”, J. Catal. 96 (1985) 251-260.
[37] G.C. Chinchen, P.J. Denny, D.G. Parker, M.S. Spencer, D.A. Whan, “Mechanism of methanol synthesis from CO2/CO/H2 mixtures over copper/zinc oxide/alumina catalysts: Use of 14C-labelled reactions”, Appl. Catal. 30 (1987) 333-338.
[38] N.E. Vanderborgh, B.E. Goodby, T.E. Springer, “Oxygen exchange reactions during methanol steam reforming”, in: Proceedings of the 32nd International Power Sources Symposium, 1986, pp. 623-628.
[39] K.C. Waugh, “Methanol synthesis”, Catal. Today 15 (1992) 51-75.
[40] B.A. Peppley, J.C. Amphlett, L.M. Kearns, R.F. Mann, “Methanol-steam reforming on Cu/ZnO/Al2O3. Part 1: the reaction network”, Appl. Catal. A: Gen. 179 (1999) 21-29.
[41] J.K. Lee, J.B. Ko, D.H. Kim, “Methanol steam reforming over Cu/ZnO/Al2O3 catalyst: kinetics and effectiveness factor”, Appl. Catal. A: Gen. 278 (2004) 25-35.
[42] H. Purnama, T. Ressler, R.E. Jentoft, H. Soerijanto, R. Schlögl, R. Schomäcker, “CO formation/selectivity for steam reforming of methanol with a commercial CuO/ZnO/Al2O3 catalyst”, Appl. Catal. A: Gen. 259 (2004) 83-94.
[43] S.G. Neophytides, A.J. Marchi, G.F. Froment, “Methanol synthesis by means of diffuse reflectance infrared Fourier transform and temperature-programmed reaction spectroscopy”, Appl. Catal. A: 86 (1992) 45-64.
[44] G.J. Millar, C.H. Rochester, K.C. Waugh, “Infrared study of methyl formate and formaldehyde adsorption on reduced and oxidised silica-supported copper catalysts”, J. Chem. Soc. Faraday Trans. 87 (17) (1991) 2785-2793.
[45] G.J. Millar, C.H. Rochester, K.C. Waugh, “Infrared study of the adsorption of methanol on oxidised and reduced Cu/SiO2 catalysts”, J. Chem. Soc., Faraday Trans. 87 (17) (1991) 2795-2804.
[46] K.M. Minachev, K.P. Kotyaev, G.I. Lin, A.Y. Rozovskii, “Temperature-programmed surface reactions of methanol on commercial Cu-containing catalysts”, Catal. Lett. 3 (1989) 299-307.
[47] B.A. Peppley, J.C. Amphlett, L.M. Kearns, R.F. Mann, “Methanol steam reforming on Cu/ZnO/Al2O3 catalysts. Part 2. A comprehensive kinetic model”, Appl. Catal. A: Gen. 179 (1999) 31-49.
[48] B. Frank, F.C. Jentoft, H. Soerijanto, J. Kröhnert, R. Schlögl, R. Schomäcker, “Steam reforming of methanol over copper-containing catalysts: Influence of support material on microkinetics”, J. Catal. 246 (2007) 177-192.
[49] J. Skrzypek, J. Sloczynski, S. Ledakowicz, “Methanol synthesis”, ISBN 83-01-11490-8, Polish Scientific Publishers, Warsaw, 1994.
[50] J. Nakamura, I. Nakamura, T. Uchijima, Y. Kanai, T. Watanabe, M. Saito, T. Fujitani, “A surface science investigation of methanol synthesis over a Zn-deposited polycrystalline Cu surface”, J. Catal. 160 (1996) 65-75.
[51] R.O. Idem, N.N. Bakhshi, Ind. Eng. Chem. Res. 33 (1994) 2056.
[52] T. Fujitani, M. Saito, Y. Kanai, T. Kakumoto, T. Watanabe, “The role of metal oxides in promoting a copper catalyst for methanol synthesis”, Catal. Lett. 25 (1994) 271-276.
[53] H. Oguchi, H. Kanai, K. Utani, Y. Matsumura, S. Imamura, “Cu2O as active species in the steam reforming of methanol by CuO/ZrO2 catalysts”, Appl. Catal. A: Gen. 293 (2005) 64-70.
[54] H. Oguchi, T. Nishiguchi, T. Matsumoto, H. Kanai, K. Utani, Y. Matsumura, S. Imamura, “Steam reforming of methanol over Cu/CeO2/ ZrO2 catalysts”, Appl. Catal. A: Gen. 281 (2005) 69-73.
[55] T.L. Reitz, P.L. Lee, K.F. Czaplewski, L.C. Lang, K.E. Popp, H.H. Kung, “Time-resolved XANES Investigation of CuO/ZnO in the oxidative methanol reforming reaction”, J. Catal. 199 (2001) 193-201.
[56] M. Turco, G. Bagnasco, U. Costantino, F. Marmottini, T. Montanari, G. Ramis, G. Busca, “Production of hydrogen from oxidative steam reforming of methanol I. Preparation and characterization of Cu/ZnO/Al2O3 catlaysts from a hydrotalcite-like LDH precursor“, J. Catal. 228 (2004) 43-55.
[57] M. Turco, G. Bagnasco, C. Cammarano, P. Senese, U. Costantino, M. Sisani, “ Cu/ZnO/Al2O3 catalysts for oxidative steam reforming of methanol: The role of Cu and the dispersing oxide matrix”, Appl. Catal. B: Enviro. 77 (2007) 46-57.
[58] K. Geissler, E. Newson, F. vogel, T.B. Truong, P. Hottinger, A. Wokaum, “Autothermal methanol reforming for hydrogen production in fuel cell applications”, Phys. Chem. Chem. Phys, 3 (2001) 289-293.
[59] J.P. Breen, F.C. Meunier, J.R.H. Ross, “Mechanistic aspects of the steam reforming of methanol over a CuO/ZnO/ZrO2/Al2O3 catalysts”, Chem. Commun. (1999) 2247-2248.
[60] S. Patel, K.K. Pant, “Influence of preparation method on performance of Cu(Zn)(Zr)-alumina catalysts for the hydrogen production via steam reforming of methanol”, J Porous Mater. 13 (2006) 373-378.
[61] Y. Okamoto, K. Fukino, T. Imanaka, S. Teranishi, J. Phys. Chem. 87 (1983) 3740.
[62] K.T. Jung, A.T. Bell, “Effects of zirconia phase on the synthesis of methanol over zirconia-supported copper”, Catal. Lett. 80 (2002) 63-68.
[63] D. Bianchi, T. Chafik, M. Khalfallah, S.J. Teichner, “Intermediate species on zirconia supported methanol aerogel catalysts: IV. Adsorption of carbon dioxide”, Appl. Catal. A: Gen. 112 (1994) 219-235.
[64] M. Pijolat, M. Prin, M. Soustelle, “Thermal stability of doped ceria: experiment and modeling”, J. Chem. Soc., Faraday Trans. 91 (1995) 3941-3948.
[65] W. Liu, M. Flytzani-Stephanopoulos, “Total oxidation of carbon monoxide and methane over transition metal fluorite oxide composite catalysts: I. Catalyst composition and activity”, J. Catal. 153 (1995) 304-316.
[66] W. Liu, M. Flytzani-Stephanopoulos, “Total oxidation of carbon-monoxide and methane over transition metal fluorite oxide composite catalysts: II. Catalyst characterization and reaction-kinetics”, J. Catal. 153 (1995) 317-332.
[67] M. Fernández-García, E. Gómez Rebollo, A. Guerrero Ruiz, J.C. Conesa, J. Soria, “Influence of ceria on the dispersion and reduction/oxidation behaviour of alumina-supported copper catalysts”, J. Catal. 172 (1997) 146-159.
[68] 黃振瑋,「CuO/Ce1-xSnxO2觸媒於富氫中CO的選擇性氧化反應研究」,國立中央大學,化學工程與材料工程研究所,碩士論文,民國94年。
[69] 張煒謙,「CuO/Ce1-xZrxO2觸媒於富氫中CO的選擇性氧化反應研究」,國立中央大學,化學工程與材料工程研究所,碩士論文,民國95年。
[70] 王榕蔓,「CuO/Ce1-xSnxO2-Al2O3觸媒於富氫中CO的選擇性氧化反應研究」,國立中央大學,化學工程與材料工程研究所,碩士論文,民國96年。
[71] J. Papavasiliou, G. Avgouropoulos, T. Ioannides, “Combined steam reforming of methanol over Cu–Mn spinel oxide catalysts”, J. Catal. 251 (2007) 7-20.
[72] J. Papavasiliou, G. Avgouropoulos, T. Ioannides, “In situ combustion synthesis of structured Cu-Ce-O and Cu-Mn-O catalysts for the production and purification of hydrogen”, Appl. Catal. B: Env. 66 (2006) 168-174.
[73] T. Umegaki, A. Masuda, K. Omata, M. Yamada, “Development of a high performance Cu-based ternary oxide catalysts for oxidative steam reforming of methanol using an artificial neural network”, Appl. Catal. A: Gen. 351 (2008) 210-216.
指導教授 陳吟足(Yin-zu Chen) 審核日期 2009-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明