參考文獻 |
1. Morgan, H., Taylor, D. M., A surface-plasmon resonance immunosensor based on the streptavidin biotin complex. Biosensors & Bioelectronics 1992, 7, (6), 405-410.
2. Boozer C., Ladd J., Chen S. F., Jiang S. T., DNA-directed protein immobilization for simultaneous detection of multiple analytes by surface plasmon resonance biosensor. Analytical Chemistry, 2006, 78(5), 1515-1519.
3. Ladd, J., Boozer, C., Yu, Q. M., Chen, S. F., Homola, J.; Jiang, S., DNA-directed protein immobilization on mixed self-assembled monolayers via a Streptavidin bridge. Langmuir 2004, 20, (19), 8090-8095.
4. Myszka D.G., Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Current Opinion in Biotechnology, 1997, 8(1), 50-57.
5. Myszka D. G., Jonsen M. D., Graves B. J., Equilibrium analysis of high affinity interactions using BIACORE. Analytical Biochemistry, 1998, 265(2), 326-330.
6. 許志銘, 表面電漿共振感測儀用於抗體與抗原結合之動力學分析. 碩士論文, 國立清華大學生醫工程與環境科學系, 2006.
7. Ritchie R. H., Plasma losses by fast electrons in thin films. Physical Review, 1957, 106, 874-881.
8. Otto A., Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Physik, 1968, 216. 398-410
9. Kretschmann E., Raether H., Radiative decay of non-radiative surface plasmons excited by light. Z. Naturforsch, 1968, 23A, 2135-2136.
10. Nylander C., Liedberg B., Lind T., Gas detection by means of surface plasmon resonance. Sensors and Actuators 3, 1982, 1, 79-88.
11. Liedberg B., Nylander C., Surface plasmons resonance for gas detection and biosensing. Sensors and Actuators 4, 1983, 299-304
12. 廖士傑, 雙離子性poly(sulfobetaine)之表面聚合及其對於血漿蛋白之高效抗吸附能力研究. 碩士論文, 國立中央大學化學工程與材料工程系, 2008.
13. Pyun J., Kowalewski T., Matyjaszewski K., Synthesis of polymer brushes using atom transfer radical polymerization. Macromolecular Rapid Communications, 2003, 24(18), 1043-1059.
14. Wang, J. S., Matyjaszewski, K., Controlled living radical polymerization - atom-transfer radical polymerization in the presence of transition-metal complexes. Journal of the American Chemical Society 1995, 117, (20), 5614-5615.
15. Wang, J. S., Matyjaszewski K., Controlled/"Living" Radical Polymerization. Halogen Atom Transfer Radical Polymerization Promoted by a Cu(I)/Cu(II) Redox Process. Macromolecules 1995,28, 7901-7910
16. Patten, T. E., Xia, J. H., Abernathy, T., Matyjaszewski, K., Polymers with very low polydispersities from atom transfer radical polymerization. Science 1996, 272, (5263), 866-868.
17. 余耀庭, 張興棟, 林峰輝, 白育綸, 生物醫用材料, 新文京開發出版股份有限公司, 2004年
18. Ratner B. D., Hoffman A., Schoen F., Lemons J., History of Biomaterials. Biomaterials Science, 2004, 10-19.
19. Chen, Q. Z., Harding, S. E., Ali, N. N., Lyon, A. R., Boccaccini, A. R., Biomaterials in cardiac tissue engineering, Ten years of research survey. Materials Science & Engineering R-Reports 2008, 59, (1-6), 1-37.
20. Levine M., The bionic human, "If I only had a..." Science, 2002, 295(5564), 2370-2370.
21. Gorbet, M. B., Sefton, M. V., Biomaterial-associated thrombosis, roles of coagulation factors, complement, platelets and leukocytes. Biomaterials 2004, 25, (26), 5681-5703.
22. Padera R. F., Schoen, F. J., Cardiovascular medical devices -An introduction to materials in medicine. Biomaterials Science, Elsevier, Academic Press, San Diego, CA, 2004, 470-494.
23. Hanson S. R., Blood coagulation and blood-materials interactions.- An introduction to materials in medicine. Biomaterials Science, Elsevier, Academic Press, San Diego, CA, 2004, 332.
24. Ratner B. D., Blood compatibility - Foreword. Journal of Biomaterials Science-Polymer Edition, 2000, 11(11), 1105-1106.
25. Ratner B. D., Blood compatibility - a perspective. Journal of Biomaterials Science-Polymer Edition, 2000, 11(11), 1107-1119.
26. Ratner B. D., The catastrophe revisited, Blood compatibility in the 21st century. Biomaterials, 2007, 28(34), 5144-5147.
27. Moriau M., The physiological mechanisms of haemostasis -Blood Platelets. Hologramme Ed., Neuilly-sur-Seine, 1988.
28. Vogler E. A., Structure and reactivity of water at biomaterial surfaces. Advances in Colloid and Interface Science, 1998, 74, 69-117.
29. Goertz, M. P., Houston, J. E., Zhu, X. Y., Hydrophilicity and the viscosity of interfacial water. Langmuir 2007, 23, (10), 5491-5497.
30. Johnson C. A., Wu, A. M. Lenhoff, Electrostatic and Van-Der-Waals contributions to protein adsorption, 2. Modeling of ordered arrays. Langmuir, 1994, 10(10), 3705-3713.
31. Hunter R., Foundations of Colloid Science, vol. I. Oxford Science Publications, New York, 1989.
32. Ramsden J. J., Puzzles and paradoxes in protein adsorption. Chemical Society Reviews, 1995, 24(1), 73-78.
33. Vroman L., The importance of surfaces in contact phase reactions. Seminars in Thrombosis and Hemostasis,1987,13(1) , 79-85.
34. Salvagnini C., Thrombin inhibitors grafting on polyester membranes for the preparation of blood-compatible materials. The doctoral dissertation, Universit? Catholique de Louvain, Belgium, 2005.
35. Vroman L., Finding seconds count after contact with blood (and that is all I did). Colloids and Surfaces B, Biointerfaces, 2008, 62, 1-4
36. Eloy R., Belleville J., Biomaterial-blood interaction - Concise encyclopedia of medical & dental materials. Williams, D.F. Ed., Pergamon Press, 1990, 74-85..
37. Wu, Y. G., Simonovsky, F. I., Ratner, B. D., Horbett, T. A., The role of adsorbed fibrinogen in platelet adhesion to polyurethane surfaces, A comparison of surface hydrophobicity, protein adsorption, monoclonal antibody binding, and platelet adhesion. Journal of Biomedical Materials Research Part A 2005, 74A, (4), 722-738.
38. Kwak, D., Wu, Y. G., Horbett, T. A., Fibrinogen and von Willebrand's factor adsorption are both required for platelet adhesion from sheared suspensions to polayethylene preadsorbed with blood plasma. Journal of Biomedical Materials Research Part A 2005, 74A, (1), 69-83.
39. Hanson S. R., Harker L. A., Blood coagulation and bood – materials interactions. Biomaterials Science, Academic Press, San Diego, 1996, 193-199.
40. Blockmans, D., Deckmyn, H., Vermylen, J., Platelet activation. Blood Reviews 1995, 9, (3), 143-156.
41. Holme, P. A., Solum, N. O., Brosstad, F., Pedersen, T., Kveine, M., Microvesicles bind soluble fibrinogen, adhere to immobilized fibrinogen and coaggregate with platelets. Thrombosis and Haemostasis 1998, 79, (2), 389-394.
42. Ratner B. D., The Blood compatibility catastrophe. Journal of Biomedical Materials Research, 1993, 27(3), 283-287.
43. Nydegger, U., Rieben, R., Lammle, B. In Biocompatibility in transfusion medicine, 1996; Transfus. Sci., 481-488.
44. Peppas, N. A., Keys, K. B., Torres-Lugo, M., Lowman, A. M. In Poly(ethylene glycol)-containing hydrogels in drug delivery. Journal of controlled release, 1999; 81-87.
45. Sefton M. V., Gemmell C. H., Nonthrombogenic treatments and strategies - An introduction to materials in medicine. Biomaterials Science, Elsevier, Academic Press. San Diego, CA, 2004, 456-470.
46. Tang, Y. W., Santerre, J. P., Labow, R. S., Taylor, D. G., Synthesis of surface-modifying macromolecules for use in segmented polyurethanes. Journal of Applied Polymer Science 1996, 62, (8), 1133-1145.
47. Munro M., Quattrone A. J., Ellsworth S. R., Kulkarni, Alkyl substituted polymers with enhanced albumin affinity. Transactions - American Society for Artificial Internal Organs, 1981, 27, 499-503.
48. 許朝翔, 利用恆溫滴定微卡計探討聚乙二醇抗蛋白質吸附之作用機制. 碩士論文, 國立中央大學化學工程與材料工程系, 2007.
49. Vermette, P., Meagher, L., Interactions of phospholipid- and poly(ethylene glycol)-modified surfaces with biological systems, relation to physico-chemical properties and mechanisms. Colloids and Surfaces B-Biointerfaces 2003, 28, (2-3), 153-198
50. Mao, C., Zhu, A. P., Qiu, Y. Z., Shen, J.; Lin, S. C. C., Introduction of O-butyrylchitosan with a photosensitive hetero-bifunctional crosslinking reagent to silicone rubber film by radiation grafting and its blood compatibility. Colloids and Surfaces B-Biointerfaces 2003, 30, (4), 299-306.
51. Mao, C., Zhu, J. J., Hu, Y. F., Ma, Q. Q., Qiu, Y. Z., Zhu, A. P., Zhao, W. B., Shen, J., Surface modification using photocrosslinkable chitosan for improving hemocompatibility. Colloids and Surfaces B-Biointerfaces 2004, 38, (1-2), 47-53
52. Fareed J., Heparin, its fractions, fragments and derivatives-Some newer perspectives. Seminars in Thrombosis and Hemostasis, 1985, 11(1), 1-9.
53. Larm O., Larsson R., Olsson, A new non-thrombogenic surface prepared by selective covalent binding of heparin via a modified reducing terminal residue. Biomaterials, medical devices, and artificial organs, 1983, 11, 161-173.
54. Georgiev, G. S., Karnenska, E. B., Vassileva, E. D., Kamenova, I. P., Georgieva, V. T.; Iliev, S. B., Ivanov, I. A., Self-assembly, anti polyelectrolyte effect, and nonbiofouling properties of polyzwitterions. Biomacromolecules 2006, 7, (4), 1329-1334.
55. Singer S. J., Nicolson G. L., The fluid mosaic model of the structure of cell membrane. Science, 1972,1, 75, 720-731.
56. Lewis A. L., Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids and Surfaces B-Biointerfaces, 2000, 18(3-4), 261-275.
57. Kadoma Y., Nakabayashi N., Masuhara E., Yamauchi J. Synthesis and hemolysis test of polymer containing phophorylcholine groups. Koubunshi Ronbunshu (Jpn J Polym Sci Technol) 1978,35,423–427
58. Ishihara, K., Ueda, T., Nakabayashi, N., Preparation of phospholipid polymers and their properties as polymer hydrogel membranes. Polymer Journal 1990, 22, (5), 355-360.
59. Iwasaki, Y., Ishihara, K., Phosphorylcholine-containing polymers for biomedical applications. Analytical and Bioanalytical Chemistry 2005, 381, (3), 534-546.
60. Feng, W., Zhu, S. P., Ishihara, K., Brash, J. L., Adsorption of fibrinogen and lysozyme on silicon grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via surface-initiated atom transfer radical polymerization. Langmuir 2005, 21, (13), 5980-5987.
61. Ishihara, K., Oshida, H., Endo, Y., Ueda, T., Watanabe, A., Nakabayashi, N., Hemocompatibility of human whole-blood on polymers with a phospholipid polar group and its mechanism. Journal of Biomedical Materials Research 1992, 26, (12),1543-1552.
62. Ishihara, K., Oshida, H., Endo, Y., Watanabe, A., Ueda, T., Nakabayashi, N., Effects of phospholipid adsorption on nonthrombogenicity of polymer with phospholipid polar group, Journal of Biomedical Materials Research 1993, 27, (10), 1309-1314.
63. Iwasaki, Y., Nakabayashi, N., Nakatani, M., Mihara, T., Kurita, K., Ishihara, K., Competitive adsorption between phospholipid and plasma protein on a phospholipid polymer surface. Journal of Biomaterials Science-Polymer Edition 1999, 10, (5), 513-529.
64. Zhang, Z., Chao, T., Chen, S. F., Jiang, S. Y., Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir 2006, 22, (24), 10072-10077.
65. Holmlin, R. E., Chen, X. X., Chapman, R. G., Takayama, S., Whitesides, G. M., Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir 2001, 17, (9), 2841-2850.
66. Chang, Y., Chen, S. F., Zhang, Z., Jiang, S. Y., Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines. Langmuir 2006, 22, (5), 2222-2226.
67. Zhang, Z., Chen, S. F., Chang, Y., Jiang, S. Y., Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. Journal of Physical Chemistry B 2006, 110, (22), 10799-10804.
68. Cheng, G., Zhang, Z., Chen, S. F., Bryers, J. D., Jiang, S. Y., Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials 2007, 28, (29), 4192-4199.
69. Azzaroni, O., Brown, A. A., Huck, W. T. S., UCST wetting transitions of polyzwitterionic brushes driven by self-association. Angewandte Chemie-International Edition 2006, 45, (11), 1770-1774.
70. Cheng, N., Brown, A. A., Azzaroni, O., Huck, W. T. S., Thickness-dependent properties of polyzwitterionic brushes. Macromolecules 2008, 41, (17), 6317-6321.
71. Yang, W., Chen, S. F., Cheng, G., Vaisocherova, H., Xue, H., Li, W., Zhang, J. L., Jiang, S. Y., Film thickness dependence of protein adsorption from blood serum and plasma onto poly(sulfobetaine)-grafted surfaces. Langmuir 2008, 24,(17), 9211-9214.
72. Chang, Y., Liao, S. C., Higuchi, A., Ruaan, R. C., Chu, C. W., Chen, W. Y., Highly stable nonbiofouling surface with well-packed grafted zwitterionic polysulfobetaine for-plasma protein repulsion. Langmuir 2008, 24, (10), 5453-5458.
73. Kane, R. S., Deschatelets, Whitesides, G. M., Kosmotropes form the basis of protein-resistant surfaces. Langmuir 2003, 19, (6), 2388-2391.
74. Zhang, Z., Chen, S. F., Jiang, S. Y., Dual-functional biomimetic materials, Nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules 2006, 7, (12), 3311-3315.
75. Zhang, Z., Zhang, M., Chen, S. F., Horbetta, T. A., Ratner, B. D., Jiang, S. Y., Blood compatibility of surfaces with superlow protein adsorption. Biomaterials 2008, 29, (32), 4285-4291.
76. Zhang, Z., Vaisocherova, H., Cheng, G., Yang, W., Xue, H., Jiang, S. Y., Nonfouling Behavior of Polycarboxybetaine-Grafted Surfaces, Structural and Environmental Effects. Biomacromolecules 2008, 9, (10), 2686-2692.
77. Llanos, G. R., Sefton, M. V., Immobilization of poly(ethylene glycol) onto a poly(vinyl alcohol) hydrogel .2. evaluation of thrombogenicity. Journal of Biomedical Materials Research 1993, 27, (11), 1383-1391.
78. Jones D. M., Brown A. A., Huck W. T. S., Surface-initiated polymerizations in aqueous media, Effect of initiator density. Langmuir, 2002, 18(4), 1265-1269.
79. Jung, L. S., Campbell, C. T., Chinowsky, T. M., Mar, M. N., Yee, S. S., Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir 1998, 14, (19), 5636-5648.
80. Bernards, M. T., Cheng, G., Zhang, Z., Chen, S. F., Jiang, S. Y., Nonfouling polymer brushes via surface-initiated, two-component atom transfer radical polymerization. Macromolecules 2008, 41, (12), 4216-4219.
81. Muzammil, S., Kumar, Y., Tayyab, S., Molten globule-like state of human serum albumin at low pH. European Journal of Biochemistry 1999, 266, (1), 26-32.
82. Kunz W., Henle J., Ninham B.W., 'Zur Lehre von der Wirkung der Salze' (about the science of the effect of salts), Franz Hofmeister's historical papers. Current Opinion in Colloid & Interface Science, 2004, 9(1-2), 19-37
83. Georgiev, G. S., Karnenska, E. B., Vassileva, E. D., Kamenova, I. P., Georgieva, V. T.; Iliev, S. B., Ivanov, I. A., Self-assembly, antipolyelectrolyte effect, and nonbiofouling properties of polyzwitterions. Biomacromolecules 2006, 7, (4), 1329-1334.
84. Lowe A. B., McCormick C .L., Synthesis and solution properties of zwitterionic polymers. Chemical Reviews, 2002, 102(11), 4177-4189
85. Leckband, D., Sheth, S., Halperin, A. In Grafted poly(ethylene oxide) brushes as nonfouling surface coatings, Journal of biomaterials science-polymer edition ,1999; 1125-1147.
86. Halperin A., Polymer brushes that resist adsorption of model proteins, Design parameters. Langmuir, 1999. 15(7), 2525-2533.
87. Kumar, Y., Tayyab, S., Muzammil, S., Molten-globule like partially folded states of human serum albumin induced by fluoro and alkyl alcohols at low pH. Archives of Biochemistry and Biophysics 2004, 426, (1), 3-10.
88. Milner, S. T. “Polymer brushes” Science 1991, 251, 905–914.
89. Lee, J. H.; Lee, H. B.; Andrade, J. D. “Blood compatibility of polyethylene oxide surfaces” Prog. Polym. Sci. 1995, 20, 1043–1079.
|