博碩士論文 963204031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:13.59.163.1
姓名 許世煌(Shih-huang Hsu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 甲基丙烯醯氧乙基三甲基氯化銨(TMA)和3-磺酸丙基甲基丙烯酸鉀鹽(SA)之混合電荷類雙離子sulfobeaine共聚高分子表面抗蛋白質吸附之研究
(Studies of Proteins Adsorption Resistance of [2-(Methacryloyloxy)ethyl]trimethylammonium(TMA) and 3-Sulfopropyl methacrylate potassium salt(SA) Mixed-charged Copolymer Brushs of Sulfobetaine-like Surface)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究
★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究
★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究
★ 立體紙基外泌體核酸萃取裝置應用於檢測不同微環境下癌細胞所釋放之外泌體與外泌體微小核醣核酸之表現量★ 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究
★ 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定★ 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 對於生醫材料控制其表面達到抗非特異性生物分子吸附的特性是重要的一環,並且材料表面除了表現出優異的抗吸附能力還必須擁有長效的穩定性以提供更進一步的實際應用。
本研究選用[2-(Methacryloyloxy)ethyl]trimethylammonium (TMA) 和3-Sulfopropyl methacrylate potassium salt (SA)單體,在修飾有溴官能基的金膜表面聚合成混合電荷共聚刷狀高分子poly (TMA/SA)。在單體比例1:1總濃度1.2M室溫的高分子聚合條件下可以得到表面為電中性的混合電荷共聚刷狀高分子;三種蛋白質Human Serum Albumin (HSA)、γ-Globulin及Fibrinogen於不同表面的非特定吸附行為由表面電漿共振儀(surface plasma resonance, SPR)來檢測獲得。此外在本研究中三種完美覆蓋的表面CH3-SAM、OEG-SAM以及poly(SBMA)刷狀高分子表面其蛋白質吸附的行為也作為實驗數據上的比較對象。
在探討操作環境對poly (TMA/SA)抗蛋白質吸附的影響方面,本研究使用的環境變因包括:溫度、鹽濃度、鹽種類以及pH值。也發現在這些實驗操作條件下poly(TMA/SA)對三種指標性蛋白質展現良好的穩定性和抗吸附能力,展現了poly(TMA/SA)的使用穩定性。此外本研究除了使用單一蛋白質做吸附測試外,還做了人體血漿及血小板貼附測試,實驗結果顯示poly(TMA/SA)表現出近似poly(SBMA)刷狀高分子良好的抗血漿吸附能力,在血小板貼附的測試中,也未發現活化的血小板貼附於poly(TMA/SA)表面,顯示poly(TMA/SA)具有相當良好的血液相容性。
摘要(英) An ideal nonbiofouling surface for biomedical applications requires both high-efficient antifouling characteristics in relation to biological components and long-term material stability from biological systems.
This work describes the performance of an antifouling surface with grafted mixed charge copolymer brushes. We form statistical copolymer brush coatings via surface-initiated atom transfer radical polymerization (ATRP) from the bromide-covered gold surface with a comonomer mixture of positively charged [2-(methacryloyloxy) ethyl]trimethylammonium chloride (TMA) and negatively charged 3-sulfopropyl methacrylate potassium salt (SA). The polymerization condition with the molar ratio (TMA:SA) of 1:1 and concentration of 1.2M in the reaction solution at 25oC allowed the formation of a neutral mixed charge polymer brush [poly(TMA/SA)], which was determined by electron spectroscopy for chemical analysis (ESCA).
The nonspecific adsorption of fibrinogen,γ-globulin, and serum albumin from human plama was measured using a surface plasmon resonance (SPR) biosensor. Three controlled surfaces with methyl-terminated (CH3) self-assembled monolayers (SAMs), oligo(ethylene glycol)-terminated (OEG) SAMs and well-packed polyzwitterionic sulfobetaine methacrylate (polySBMA) brushes were also studied for comparison. It was found that excellent stable nonbiofouling surface with grafted poly(TMA/SA) can be performed with a cycling test of the three model protein adsorption and in a wide range of various salt types, buffer composition, solution pH, and temperature. It was further revealed that the poly(TMA/SA) grafted surface effectively reduces the plasma protein adsorption from platelet poor plasma solution to a level comparable to the well-packed polySBMA grafted surface but superior than that of adsorption on a surface terminated with tetra(ethylene glycol). The adhesion and activation of platelet from platelet rich plasma solution were not observed on the poly(TMA/SA) grafted surface.
This work further concludes that a surface with good hemocompatibility can be simply achieved by the well-packed surface grafted neutral mixed charge poly(TMA/SA) brushes.
關鍵字(中) ★ 雙離子性高分子
★ 抗生物分子吸附
★ 原子自由基轉移聚合法
★ 血液相容性
★ 表面電漿共振
★ 蛋白質
關鍵字(英) ★ zwitterionic
★ sulfobetanie
★ SPR
★ protein
★ nonbiofouling
★ ATRP
★ hemocompatibility
論文目次 中文摘要…………………………………………………..……………………………........I
Abstract………………………………………….………………………………………….Ⅱ
誌謝…………………………………………..…………………………………………….Ⅳ
目錄………………………………………………………………………………….……...V
圖目錄…………………………………………………………………………… .……..VIII
表目錄……………………………………………………………..………...………….....X I
第一章 緒論…………………………………………………………..…………………1
第二章 文獻回顧……………………………………………………………………..…3
2.1 表面電漿共振 (Surface Plasmon Resonance,SPR) …………………….…….…...3
2.1.1 表面電漿共振原理…………………………………...…..………………..3
2.1.2 表面電漿共振的應用……………………….………………..……………7
2.1.3 表面電漿共振感測儀類型………………..……………………………….7
2.1.4 表面電漿共振感測儀檢測生物反應………………………...……………8
2.2 原子轉移自由基聚合法……………………………………..…………...……….10
(Atom Transfer Radical Polymerization, ATRP)
2.3 生物相容性材料………………………………………………………. ...……….13
2.3.1 生物相容性………………………………………..………………...……14
2.3.2 組織相容性………………..……..…...…………………………..………16
2.3.2.1生物材料與發炎………..……..……………..………………...…17
2.3.2.2生物材料與腫瘤………..……..……………..………………...…17
2.3.3血液相容性………………..……..……………………………..…………18
2.3.3.1血液之組成……………..……..……………..……………...……21
2.3.3.2血液組成與表面的交互作用.………………..…………………..23
2.3.3.3材料與血液的相互關係…….………………..…………………..26
2.3.3.4血小板……………………….………………..………………….27
2.3.3.5生物材料與血小板的相互關係…….…..……………………….29
2.3.3.6凝血機制……...…..……………………………………………...29
2.3.3.7生物材料與凝血機制的相互關係………...…………………….33
2.3.4 血液相容性材料之回顧…………………………………………………34
2.3.4.1水凝膠……………………………………………………………35
2.3.4.2氟化表面…………………………………………………………35
2.3.4.3白蛋白之表面塗佈(Albumin Coating) …..……………………...36
2.3.4.4 表面之聚乙烯乙二醇固定化………………..………………….36
2.3.4.5 類磷脂質之仿生表面………………………..….........................37
2.3.4.6 表面之幾丁聚糖固定化……………………...…........................38
2.3.4.7 表面之肝素固定化…………………………...…........................39
2.3.5 仿生雙離子性高分子之血液相容性相關研究…….…...........................41
2.3.5.1 PC類雙離子性高分子………………….……………………….43
2.3.5.2 其他人工合成的雙離子性高分子……….……………………..51
第三章 實驗藥品、設備及實驗方法…………………………….…………………..63
3.1 實驗藥品………………………………………………………………....……...63
3.2 實驗設備…………………………………………………....…………………...64
3.3 實驗方法………………………………………………………………………...66
3.3.1 緩衝溶液的製備…………………………………………………………66
3.3.2 蛋白質溶液的製備………………………………………………………67
3.3.3 血漿溶液的分離與稀釋…………………………………………………67
3.3.4 金表面改質………………………………………………………………68
3.3.5 表面電漿共振感測儀之實驗……………………………………………75
3.3.6 血小貼附實驗……………………………………………………………76
第四章 結果與討論………………………………………………….. ………………77
4.1 表面鑑定………………………………………………………………………...78
4.1.1 ESCA檢測樣品表面組成和靜態接觸角測量………. …………………78
4.2 蛋白質吸附測試……………………………………………... ………………...80
4.2.1抗單一蛋白質吸附測試………………………………. ………………...81
4.2.2 循環使用穩定性測試……..……………………………………………..85
4.2.3各種效應對poly(SBMA)穩定性的影響……..………. ………………...86
4.2.3.1 鹽類效應………………………………………. ………………...86
4.2.3.2 pH值效應……………………………………. ………………...94
4.3 血漿吸附測試………………………………………………... ………………...97
4.4 血小板貼附測試……………………………………………... ………………...99
4.5長時間保存對刷狀高分子抗蛋白吸附的影響……………... ………………..101
第五章 結論………………………………………………………………………….103
第六章 參考文獻…………………………………………………………………….105
參考文獻 1. Morgan, H., Taylor, D. M., A surface-plasmon resonance immunosensor based on the streptavidin biotin complex. Biosensors & Bioelectronics 1992, 7, (6), 405-410.
2. Boozer C., Ladd J., Chen S. F., Jiang S. T., DNA-directed protein immobilization for simultaneous detection of multiple analytes by surface plasmon resonance biosensor. Analytical Chemistry, 2006, 78(5), 1515-1519.
3. Ladd, J., Boozer, C., Yu, Q. M., Chen, S. F., Homola, J.; Jiang, S., DNA-directed protein immobilization on mixed self-assembled monolayers via a Streptavidin bridge. Langmuir 2004, 20, (19), 8090-8095.
4. Myszka D.G., Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Current Opinion in Biotechnology, 1997, 8(1), 50-57.
5. Myszka D. G., Jonsen M. D., Graves B. J., Equilibrium analysis of high affinity interactions using BIACORE. Analytical Biochemistry, 1998, 265(2), 326-330.
6. 許志銘, 表面電漿共振感測儀用於抗體與抗原結合之動力學分析. 碩士論文, 國立清華大學生醫工程與環境科學系, 2006.
7. Ritchie R. H., Plasma losses by fast electrons in thin films. Physical Review, 1957, 106, 874-881.
8. Otto A., Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Physik, 1968, 216. 398-410
9. Kretschmann E., Raether H., Radiative decay of non-radiative surface plasmons excited by light. Z. Naturforsch, 1968, 23A, 2135-2136.
10. Nylander C., Liedberg B., Lind T., Gas detection by means of surface plasmon resonance. Sensors and Actuators 3, 1982, 1, 79-88.
11. Liedberg B., Nylander C., Surface plasmons resonance for gas detection and biosensing. Sensors and Actuators 4, 1983, 299-304
12. 廖士傑, 雙離子性poly(sulfobetaine)之表面聚合及其對於血漿蛋白之高效抗吸附能力研究. 碩士論文, 國立中央大學化學工程與材料工程系, 2008.
13. Pyun J., Kowalewski T., Matyjaszewski K., Synthesis of polymer brushes using atom transfer radical polymerization. Macromolecular Rapid Communications, 2003, 24(18), 1043-1059.
14. Wang, J. S., Matyjaszewski, K., Controlled living radical polymerization - atom-transfer radical polymerization in the presence of transition-metal complexes. Journal of the American Chemical Society 1995, 117, (20), 5614-5615.
15. Wang, J. S., Matyjaszewski K., Controlled/"Living" Radical Polymerization. Halogen Atom Transfer Radical Polymerization Promoted by a Cu(I)/Cu(II) Redox Process. Macromolecules 1995,28, 7901-7910
16. Patten, T. E., Xia, J. H., Abernathy, T., Matyjaszewski, K., Polymers with very low polydispersities from atom transfer radical polymerization. Science 1996, 272, (5263), 866-868.
17. 余耀庭, 張興棟, 林峰輝, 白育綸, 生物醫用材料, 新文京開發出版股份有限公司, 2004年
18. Ratner B. D., Hoffman A., Schoen F., Lemons J., History of Biomaterials. Biomaterials Science, 2004, 10-19.
19. Chen, Q. Z., Harding, S. E., Ali, N. N., Lyon, A. R., Boccaccini, A. R., Biomaterials in cardiac tissue engineering, Ten years of research survey. Materials Science & Engineering R-Reports 2008, 59, (1-6), 1-37.
20. Levine M., The bionic human, "If I only had a..." Science, 2002, 295(5564), 2370-2370.
21. Gorbet, M. B., Sefton, M. V., Biomaterial-associated thrombosis, roles of coagulation factors, complement, platelets and leukocytes. Biomaterials 2004, 25, (26), 5681-5703.
22. Padera R. F., Schoen, F. J., Cardiovascular medical devices -An introduction to materials in medicine. Biomaterials Science, Elsevier, Academic Press, San Diego, CA, 2004, 470-494.
23. Hanson S. R., Blood coagulation and blood-materials interactions.- An introduction to materials in medicine. Biomaterials Science, Elsevier, Academic Press, San Diego, CA, 2004, 332.
24. Ratner B. D., Blood compatibility - Foreword. Journal of Biomaterials Science-Polymer Edition, 2000, 11(11), 1105-1106.
25. Ratner B. D., Blood compatibility - a perspective. Journal of Biomaterials Science-Polymer Edition, 2000, 11(11), 1107-1119.
26. Ratner B. D., The catastrophe revisited, Blood compatibility in the 21st century. Biomaterials, 2007, 28(34), 5144-5147.
27. Moriau M., The physiological mechanisms of haemostasis -Blood Platelets. Hologramme Ed., Neuilly-sur-Seine, 1988.
28. Vogler E. A., Structure and reactivity of water at biomaterial surfaces. Advances in Colloid and Interface Science, 1998, 74, 69-117.
29. Goertz, M. P., Houston, J. E., Zhu, X. Y., Hydrophilicity and the viscosity of interfacial water. Langmuir 2007, 23, (10), 5491-5497.
30. Johnson C. A., Wu, A. M. Lenhoff, Electrostatic and Van-Der-Waals contributions to protein adsorption, 2. Modeling of ordered arrays. Langmuir, 1994, 10(10), 3705-3713.
31. Hunter R., Foundations of Colloid Science, vol. I. Oxford Science Publications, New York, 1989.
32. Ramsden J. J., Puzzles and paradoxes in protein adsorption. Chemical Society Reviews, 1995, 24(1), 73-78.
33. Vroman L., The importance of surfaces in contact phase reactions. Seminars in Thrombosis and Hemostasis,1987,13(1) , 79-85.
34. Salvagnini C., Thrombin inhibitors grafting on polyester membranes for the preparation of blood-compatible materials. The doctoral dissertation, Universit? Catholique de Louvain, Belgium, 2005.
35. Vroman L., Finding seconds count after contact with blood (and that is all I did). Colloids and Surfaces B, Biointerfaces, 2008, 62, 1-4
36. Eloy R., Belleville J., Biomaterial-blood interaction - Concise encyclopedia of medical & dental materials. Williams, D.F. Ed., Pergamon Press, 1990, 74-85..
37. Wu, Y. G., Simonovsky, F. I., Ratner, B. D., Horbett, T. A., The role of adsorbed fibrinogen in platelet adhesion to polyurethane surfaces, A comparison of surface hydrophobicity, protein adsorption, monoclonal antibody binding, and platelet adhesion. Journal of Biomedical Materials Research Part A 2005, 74A, (4), 722-738.
38. Kwak, D., Wu, Y. G., Horbett, T. A., Fibrinogen and von Willebrand's factor adsorption are both required for platelet adhesion from sheared suspensions to polayethylene preadsorbed with blood plasma. Journal of Biomedical Materials Research Part A 2005, 74A, (1), 69-83.
39. Hanson S. R., Harker L. A., Blood coagulation and bood – materials interactions. Biomaterials Science, Academic Press, San Diego, 1996, 193-199.
40. Blockmans, D., Deckmyn, H., Vermylen, J., Platelet activation. Blood Reviews 1995, 9, (3), 143-156.
41. Holme, P. A., Solum, N. O., Brosstad, F., Pedersen, T., Kveine, M., Microvesicles bind soluble fibrinogen, adhere to immobilized fibrinogen and coaggregate with platelets. Thrombosis and Haemostasis 1998, 79, (2), 389-394.
42. Ratner B. D., The Blood compatibility catastrophe. Journal of Biomedical Materials Research, 1993, 27(3), 283-287.
43. Nydegger, U., Rieben, R., Lammle, B. In Biocompatibility in transfusion medicine, 1996; Transfus. Sci., 481-488.
44. Peppas, N. A., Keys, K. B., Torres-Lugo, M., Lowman, A. M. In Poly(ethylene glycol)-containing hydrogels in drug delivery. Journal of controlled release, 1999; 81-87.
45. Sefton M. V., Gemmell C. H., Nonthrombogenic treatments and strategies - An introduction to materials in medicine. Biomaterials Science, Elsevier, Academic Press. San Diego, CA, 2004, 456-470.
46. Tang, Y. W., Santerre, J. P., Labow, R. S., Taylor, D. G., Synthesis of surface-modifying macromolecules for use in segmented polyurethanes. Journal of Applied Polymer Science 1996, 62, (8), 1133-1145.
47. Munro M., Quattrone A. J., Ellsworth S. R., Kulkarni, Alkyl substituted polymers with enhanced albumin affinity. Transactions - American Society for Artificial Internal Organs, 1981, 27, 499-503.
48. 許朝翔, 利用恆溫滴定微卡計探討聚乙二醇抗蛋白質吸附之作用機制. 碩士論文, 國立中央大學化學工程與材料工程系, 2007.
49. Vermette, P., Meagher, L., Interactions of phospholipid- and poly(ethylene glycol)-modified surfaces with biological systems, relation to physico-chemical properties and mechanisms. Colloids and Surfaces B-Biointerfaces 2003, 28, (2-3), 153-198
50. Mao, C., Zhu, A. P., Qiu, Y. Z., Shen, J.; Lin, S. C. C., Introduction of O-butyrylchitosan with a photosensitive hetero-bifunctional crosslinking reagent to silicone rubber film by radiation grafting and its blood compatibility. Colloids and Surfaces B-Biointerfaces 2003, 30, (4), 299-306.
51. Mao, C., Zhu, J. J., Hu, Y. F., Ma, Q. Q., Qiu, Y. Z., Zhu, A. P., Zhao, W. B., Shen, J., Surface modification using photocrosslinkable chitosan for improving hemocompatibility. Colloids and Surfaces B-Biointerfaces 2004, 38, (1-2), 47-53
52. Fareed J., Heparin, its fractions, fragments and derivatives-Some newer perspectives. Seminars in Thrombosis and Hemostasis, 1985, 11(1), 1-9.
53. Larm O., Larsson R., Olsson, A new non-thrombogenic surface prepared by selective covalent binding of heparin via a modified reducing terminal residue. Biomaterials, medical devices, and artificial organs, 1983, 11, 161-173.
54. Georgiev, G. S., Karnenska, E. B., Vassileva, E. D., Kamenova, I. P., Georgieva, V. T.; Iliev, S. B., Ivanov, I. A., Self-assembly, anti polyelectrolyte effect, and nonbiofouling properties of polyzwitterions. Biomacromolecules 2006, 7, (4), 1329-1334.
55. Singer S. J., Nicolson G. L., The fluid mosaic model of the structure of cell membrane. Science, 1972,1, 75, 720-731.
56. Lewis A. L., Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids and Surfaces B-Biointerfaces, 2000, 18(3-4), 261-275.
57. Kadoma Y., Nakabayashi N., Masuhara E., Yamauchi J. Synthesis and hemolysis test of polymer containing phophorylcholine groups. Koubunshi Ronbunshu (Jpn J Polym Sci Technol) 1978,35,423–427
58. Ishihara, K., Ueda, T., Nakabayashi, N., Preparation of phospholipid polymers and their properties as polymer hydrogel membranes. Polymer Journal 1990, 22, (5), 355-360.
59. Iwasaki, Y., Ishihara, K., Phosphorylcholine-containing polymers for biomedical applications. Analytical and Bioanalytical Chemistry 2005, 381, (3), 534-546.
60. Feng, W., Zhu, S. P., Ishihara, K., Brash, J. L., Adsorption of fibrinogen and lysozyme on silicon grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via surface-initiated atom transfer radical polymerization. Langmuir 2005, 21, (13), 5980-5987.
61. Ishihara, K., Oshida, H., Endo, Y., Ueda, T., Watanabe, A., Nakabayashi, N., Hemocompatibility of human whole-blood on polymers with a phospholipid polar group and its mechanism. Journal of Biomedical Materials Research 1992, 26, (12),1543-1552.
62. Ishihara, K., Oshida, H., Endo, Y., Watanabe, A., Ueda, T., Nakabayashi, N., Effects of phospholipid adsorption on nonthrombogenicity of polymer with phospholipid polar group, Journal of Biomedical Materials Research 1993, 27, (10), 1309-1314.
63. Iwasaki, Y., Nakabayashi, N., Nakatani, M., Mihara, T., Kurita, K., Ishihara, K., Competitive adsorption between phospholipid and plasma protein on a phospholipid polymer surface. Journal of Biomaterials Science-Polymer Edition 1999, 10, (5), 513-529.
64. Zhang, Z., Chao, T., Chen, S. F., Jiang, S. Y., Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir 2006, 22, (24), 10072-10077.
65. Holmlin, R. E., Chen, X. X., Chapman, R. G., Takayama, S., Whitesides, G. M., Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir 2001, 17, (9), 2841-2850.
66. Chang, Y., Chen, S. F., Zhang, Z., Jiang, S. Y., Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines. Langmuir 2006, 22, (5), 2222-2226.
67. Zhang, Z., Chen, S. F., Chang, Y., Jiang, S. Y., Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. Journal of Physical Chemistry B 2006, 110, (22), 10799-10804.
68. Cheng, G., Zhang, Z., Chen, S. F., Bryers, J. D., Jiang, S. Y., Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials 2007, 28, (29), 4192-4199.
69. Azzaroni, O., Brown, A. A., Huck, W. T. S., UCST wetting transitions of polyzwitterionic brushes driven by self-association. Angewandte Chemie-International Edition 2006, 45, (11), 1770-1774.
70. Cheng, N., Brown, A. A., Azzaroni, O., Huck, W. T. S., Thickness-dependent properties of polyzwitterionic brushes. Macromolecules 2008, 41, (17), 6317-6321.
71. Yang, W., Chen, S. F., Cheng, G., Vaisocherova, H., Xue, H., Li, W., Zhang, J. L., Jiang, S. Y., Film thickness dependence of protein adsorption from blood serum and plasma onto poly(sulfobetaine)-grafted surfaces. Langmuir 2008, 24,(17), 9211-9214.
72. Chang, Y., Liao, S. C., Higuchi, A., Ruaan, R. C., Chu, C. W., Chen, W. Y., Highly stable nonbiofouling surface with well-packed grafted zwitterionic polysulfobetaine for-plasma protein repulsion. Langmuir 2008, 24, (10), 5453-5458.
73. Kane, R. S., Deschatelets, Whitesides, G. M., Kosmotropes form the basis of protein-resistant surfaces. Langmuir 2003, 19, (6), 2388-2391.
74. Zhang, Z., Chen, S. F., Jiang, S. Y., Dual-functional biomimetic materials, Nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules 2006, 7, (12), 3311-3315.
75. Zhang, Z., Zhang, M., Chen, S. F., Horbetta, T. A., Ratner, B. D., Jiang, S. Y., Blood compatibility of surfaces with superlow protein adsorption. Biomaterials 2008, 29, (32), 4285-4291.
76. Zhang, Z., Vaisocherova, H., Cheng, G., Yang, W., Xue, H., Jiang, S. Y., Nonfouling Behavior of Polycarboxybetaine-Grafted Surfaces, Structural and Environmental Effects. Biomacromolecules 2008, 9, (10), 2686-2692.
77. Llanos, G. R., Sefton, M. V., Immobilization of poly(ethylene glycol) onto a poly(vinyl alcohol) hydrogel .2. evaluation of thrombogenicity. Journal of Biomedical Materials Research 1993, 27, (11), 1383-1391.
78. Jones D. M., Brown A. A., Huck W. T. S., Surface-initiated polymerizations in aqueous media, Effect of initiator density. Langmuir, 2002, 18(4), 1265-1269.
79. Jung, L. S., Campbell, C. T., Chinowsky, T. M., Mar, M. N., Yee, S. S., Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir 1998, 14, (19), 5636-5648.
80. Bernards, M. T., Cheng, G., Zhang, Z., Chen, S. F., Jiang, S. Y., Nonfouling polymer brushes via surface-initiated, two-component atom transfer radical polymerization. Macromolecules 2008, 41, (12), 4216-4219.
81. Muzammil, S., Kumar, Y., Tayyab, S., Molten globule-like state of human serum albumin at low pH. European Journal of Biochemistry 1999, 266, (1), 26-32.
82. Kunz W., Henle J., Ninham B.W., 'Zur Lehre von der Wirkung der Salze' (about the science of the effect of salts), Franz Hofmeister's historical papers. Current Opinion in Colloid & Interface Science, 2004, 9(1-2), 19-37
83. Georgiev, G. S., Karnenska, E. B., Vassileva, E. D., Kamenova, I. P., Georgieva, V. T.; Iliev, S. B., Ivanov, I. A., Self-assembly, antipolyelectrolyte effect, and nonbiofouling properties of polyzwitterions. Biomacromolecules 2006, 7, (4), 1329-1334.
84. Lowe A. B., McCormick C .L., Synthesis and solution properties of zwitterionic polymers. Chemical Reviews, 2002, 102(11), 4177-4189
85. Leckband, D., Sheth, S., Halperin, A. In Grafted poly(ethylene oxide) brushes as nonfouling surface coatings, Journal of biomaterials science-polymer edition ,1999; 1125-1147.
86. Halperin A., Polymer brushes that resist adsorption of model proteins, Design parameters. Langmuir, 1999. 15(7), 2525-2533.
87. Kumar, Y., Tayyab, S., Muzammil, S., Molten-globule like partially folded states of human serum albumin induced by fluoro and alkyl alcohols at low pH. Archives of Biochemistry and Biophysics 2004, 426, (1), 3-10.
88. Milner, S. T. “Polymer brushes” Science 1991, 251, 905–914.
89. Lee, J. H.; Lee, H. B.; Andrade, J. D. “Blood compatibility of polyethylene oxide surfaces” Prog. Polym. Sci. 1995, 20, 1043–1079.
指導教授 陳文逸(Wen-Yih Chen) 審核日期 2009-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明