博碩士論文 963204039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.139.80.42
姓名 林逸全(Yi-Chuan Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以融鹽法製備高振實密度之LiFePO4鋰離子電池陰極材料
(High tap density LiFePO4/C cathode material by molten salt synthesis for Li-ion batteries)
相關論文
★ LixNi1-yCoyO2及LiM0.5-yM'yMn1.5O4之合成與電池性能★ 鋅空氣一次電池之自放電與鋅極腐蝕 抑制改善之研究
★ 鋰離子電池陽極碳材料開發★ 鋰離子電池LixNi1-yCoyO2陰極材料之溶膠凝膠法製程研究
★ 鋰離子電池混合金屬氧化物材料之電化學特性分析★ 由天然農作物製備鋰離子電池負極碳材料
★ LiCoO2陰極材料重要製程評估與改質研究★ LiNi0.8Co0.2O2陰極材料製程與改質研究
★ 由花生殼製備鋰離子電池高電容量負極碳材料★ 鋰離子電池層狀結構陰極材料合成與改質研究
★ 以三乙醇氨-蔗糖燃燒法合成LiCoO2製程研究★ 以硝酸銨-環六亞甲基四胺燃燒法合成奈米級LiMn2O4陰極材料製程研究
★ 以奈米級ZrO2為塗佈物質改良鋰離子電池LiCoO2陰極材料充放電性能研究★ 以複合金屬氧化物為塗佈物質表面處理 鋰離子電池LiCoO2 陰極材料之製程研究
★ 鈣鈦礦結構氧化物改質LiCoO2陰極材料之製程與其電池性能研究★ 鋰離子電池鈷酸鋰陰極材料之表面改質及電池性能研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要分為兩大部分,第一部分利用試藥級起始物,以融鹽法於不同煆燒溫度下合成出未經碳塗佈之磷酸亞鐵鋰粉體,再以行星式球磨機固定濕式研磨6小時減少粉體粒徑;最後將不同粒徑之磷酸亞鐵鋰粉末置於管狀高溫爐下游,而丙二酸碳源錠則置於管狀高溫爐上游,經由丙二酸生成的碳蒸鍍,於873 K煆燒12小時後,利用煆燒的過程,將碳塗佈於粉體表面,製備出不同粒徑大小之LiFePO4/C複合材料。
利用融鹽法於不同煆燒溫度下所合成的純磷酸亞體鋰粉體,皆有光滑的表面型態,而且隨著粉體平均粒徑的增加,其振實密度越大。另外,為了解材料中碳之塗佈情形,吾人以TEM/ SAED/ EDS進行分析,由EDS發現有些微的碳塗佈於LiFePO4材料表面,且以厚度5-10 nm之碳層薄膜包覆於灰黑色LiFePO4材料表面,經SAED分析後發現為不定型結構之碳。藉由一系列的材料特性與電化學性質鑑定分析,發現LiFePO4/C複合材料之粉體平均粒徑越小,其導電度、碳含量越高,電容量與長循環穩定性越佳,但材料之振實密度卻相對地較低。
由於第一部份所合成的磷酸亞鐵鋰/碳複合材料,其製程複雜與成本過高,將不利於商業化量產。因此,第二部分的製程開發主要著重在製程簡化與降低成本,而且為了提升材料的振實密度,吾人將結合碳熱還原法與融鹽法,利用兩製程的優點,合成出具備低成本與高振實密度之磷酸亞鐵鋰複合材料。第二部分採用工業級起始物,利用碳熱還原法合成出磷酸亞鐵鋰/碳複合材料,將其壓成錠後置於氧化鋁杯中,並且錠周圍以KCl包覆;最後再將氧化鋁杯置於管狀高溫爐中,於1028 K高溫下進行二次煆燒,使得原來的磷酸亞鐵鋰複合材料在KCl融鹽介質下,經過短時間的高溫反應,改變粉體的表面型態,使其趨於圓滑,並且增加粉體粒徑大小,提升材料之振實密度。
LiFePO4/C複合材料之粉體粒徑越大,其導電度越低,碳含量越少,導致有較差的電池性能。藉由拉曼光譜分析,分別經過KCl融鹽二次煆燒1.0與3.0小時之樣品,其ID/IG值有非常明顯的增加,由此可知KCl融鹽在煆燒的過程中,將會影響原有LiFePO4/C複合材料之表面碳層結構,導致石墨化碳之比例降低,降低LiFePO4/C複合材料之導電度。最佳製程條件之複合材料,其振實密度為1.50 g cm-3,於0.2 C電流速率與2.8-4.0 V截止電壓之電池測試條件下,初始放電電容量為139 mAh g-1,使其有最佳體積能量密度為212 mAh cm-3,經過323次充放電循環後,放電電容量為118 mAh g-1,電荷維持率達84 %。
摘要(英) Olivine-type cathode materials of LiFePO4 were prepared by a carbonthermal reduction method to lower synthesis cost. In order to enhance the powder’s tap density, the LiFePO4/C product was pressed into pellets and then sintered for at least 1 h at 755 ℃, which is the melting point of KCl salt. It is found that the molten salt can effectively influence the morphology and tap density of particles, and changes the electrochemical performance of the prepared LiFePO4. The compounds were characterized in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), particle size distribution (PSD), and tap density testing. The final product with high tap density of 1.50 g cm-1 contained 4.58 wt.% carbon and exhibited excellent rate capability of 140.7 at the 0.2 C discharge rate between 2.8-4.0 V. The high tap density LiFePO4/C cathode material can be used in the lithium ion batteries to greatly increase their volumetric energy density.
關鍵字(中) ★ 振實密度
★ 融鹽法
★ 磷酸亞鐵鋰
★ 陰極材料
關鍵字(英) ★ molten salt
★ Tap density
★ Cathode
★ LiFePO4
論文目次 目 錄
摘 要 ...................................................I
致 謝 ..................................................IV
目 錄 ...................................................V
圖 目 錄 ................................................IX
表 目 錄 ............................................. XVII
第一章 緒論 ............................................ 01
1.1 前言 ............................................... 01
1.2 鋰離子電池陰極材料簡介 ............................. 03
1.3 研究目的及架構 ..................................... 07
第二章 文獻回顧 ........................................ 09
2.1 融鹽法 ............................................. 09
2.2 融鹽法合成鋰離子電池之陰極材料 ..................... 10
2.2.1 LiCoO2 .......................................... 10
2.2.2 LiNiVO4 ......................................... 12
2.2.3 LiFePO4 ......................................... 13
2.2.4 Li4Mn5O12 ....................................... 15
2.2.5 LiMn1/3Ni1/3Co1/3O2 ..............................16
2.2.6 Li4Ti5O12 ....................................... 18
2.3 LiFePO4陰極材料介紹 ................................ 20
2.4 LiFePO4陰極材料之改質研究........................... 28
2.4.1 碳塗佈層改質 ..................................... 28
2.4.2 金屬摻雜改質 ..................................... 33
2.4.3 粒徑大小對磷酸亞鐵鋰之影響 ....................... 35
2.4.4 提升磷酸亞鐵鋰之振實密度 ......................... 41
第三章 實驗方法 ........................................ 47
3.1 實驗儀器設備 ....................................... 47
3.2 實驗藥品器材 ....................................... 48
3.3 實驗步驟 ........................................... 49
3.3.1 利用KCl-LiCl共融鹽,以融鹽法合成純磷酸亞鐵鋰粉體
.................................................. 49
3.3.2 不同粒徑之磷酸亞鐵鋰粉體製備 ..................... 51
3.3.3 以丙二酸蒸鍍磷酸亞鐵鋰粉體 ....................... 51
3.3.4 以融鹽法合成LiFePO4/C複合材料之實驗流程圖 ........ 53
3.3.5 以融鹽法結合碳熱還原法合成磷酸亞鐵鋰粉體 ......... 54
3.3.6 以融鹽法結合碳熱還原法合成LiFePO4/C複合材料之實驗流程圖 .................................. 56
3.4 材料鑑定分析........................................ 57
3.4.1 X光繞射儀 (X-ray Diffractometer, XRD) ........... 57
3.4.2 動態光散射 (Dynamic Light Scattering, DLS) ....... 57
3.4.3 總有機碳分析儀(Total Organic Carbon, TOC Analyzer) .................................................. 57
3.4.4 導電度測試 ....................................... 58
3.4.5 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) ............................................. 58
3.4.6 高解析穿透式電子顯微鏡 (High Resolution Transmission Electron Microscope, HR-TEM) ................... 58
3.4.7 顯微拉曼光譜 (Microscopes Raman Spectrum ) ....... 59
3.4.8 微分掃描熱卡儀(Differential Scanning Calorimeter, DSC)............................................. 59
3.4.9 表面積測試(Brunauer Emmett Teller, BET)......... 59
3.5 材料電化學特性分析 ................................. 60
3.5.1. 電池性能測試 .................................... 60
3.5.2. 慢速循環伏安分析(Slow scan cyclic voltammetry) .. 63
第四章 結果與討論 ...................................... 65
4.1 融鹽法合成純磷酸亞鐵鋰及其複合材料 ................. 66
4.2 X光繞射結構分析 ................................... 68
4.3 融鹽法合成磷酸亞鐵鋰粉體之粒徑分佈 ................. 72
4.4 掃描式電子顯微鏡觀測 ............................... 77
4.5 穿透式電子顯微鏡分析 ............................... 82
4.6 其他相關材料鑑定與分析 ............................. 85
4.6.1 振實密度測試 ..................................... 86
4.6.2 碳含量、導電度測試及其他鑑定結果 ................. 90
4.7 電池性能評估 ....................................... 93
4.7.1 純磷酸亞鐵鋰材料 ................................. 93
4.7.2 磷酸亞鐵鋰複合材料................................ 95
4.7.3 磷酸亞鐵鋰複合材料之長循環測試 ................... 96
4.7.4 特徵曲線測試 ..................................... 97
4.7.5 慢速循環伏安測試 ................................. 98
4.8 微分掃描熱卡儀分析材料之熱穩定性 .................. 101
4.9 水對LiFePO4/C複合材料之影響 ....................... 103
4.10 以融鹽法製備高振實密度LiFePO4/C複合材料之製程簡化 ............................................... 109
4.10.1 先驅物不壓錠與煆燒溫度變因 ..................... 110
4.10.2 先驅物與KCl鹽類之接觸方式 ...................... 112
4.10.3 添加KCl融鹽之時機 .............................. 114
4.10.4 KCl融鹽之二次煆燒時間變因 ..................... 116
4.10.5 碳源添加量變因 ................................. 118
4.10.6 最佳製程條件之長循環測試圖 ..................... 120
4.10.7 特徵曲線測試圖 ................................. 121
4.11 X光繞射結構分析不同振實密度之LiFePO4/C複合材料 .. 122
4.12 不同振實密度LiFePO4/C複合材料之粒徑分佈 .......... 124
4.13 不同振實密度LiFePO4/C複合材料之掃描式電子顯微鏡觀測 ............................................... 125
4.14 高振實密度LiFePO4/C複合材料之穿透式電子顯微鏡分析 .................................................. 127
4.15 不同振實密度LiFePO4/C複合材料之拉曼光譜測試 ...... 129
4.16 其他相關材料鑑定與分析 ........................... 131
第五章 結論 ........................................... 134
第六章 參考文獻 ....................................... 138
參考文獻 01. 科技產業資訊室(2004.04.20) http://cdnet.stpi.org.tw/techroom/market/energy/energy006.htm
02. 姚慶義, “鋰鐵磷電池的發展與運用”, 工業材料雜誌, 255期, 185-190頁, 2008年3月.
03. A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem. Soc. 144 (1997) 1188.
04. R. Koksbang, J. Barker, H. Shi, M.Y. Saidi, Solid State lonics 84 (1996) 1-21.
05. J.W. Lee, S.M. Park, H.J. Kim, J. Power Sources 188 (2009) 583-587.
06. S.A. Needham, G.X. Wang, H.K. Liu, V.A. Drozd, R.S. Liu, J. Power Sources 174 (2007) 828–831.
07. J. Kim, B.H. Kim, Y.H. Baik, P.K. Chang, H.S. Park, K. Amine, J. Power Sources 158 (2006) 641–645.
08. R. Sathiyamoorthi, P. Shakkthivel, S. Ramalakshmi, Y.G. Shul, J. Power Sources 171 (2007) 922–927.
09. T. Ohzuku, R.J. Brodd, J. Power Sources 174 (2007) 449–456.
10. S.Y. Chung, J.T. Bloking, Y.M. Chiang, Nature Materials 1 (2002) 123.
11. 陳靖惠, “電動車能源管理市場分析”, 經濟部技術處ITIS計畫成果, 金屬中心產業研究組, 2008年9月.
12. G. Charlot, B. Tremillon, in: Les re´actions chimiques dans les solvants et les sels fondus, Gauthier-Villars, Paris, 1963.
13. P. Afanasiev, C. Geantet, Coordination Chemistry Reviews 178–180 (1998) 1725–1752.
14. Y. Tian, D. Chen, X. Jiao and Y. Duan, Chem. Commun. (20), (2007) 2072–2074.
15. K.H. Jeong, H.W. Ha, N.J. Yun, M.Z. Hong, K. Kim, Electrochimica Acta 50 (2005) 5349–5353.
16. M. V. Reddy, G. V. Subba Rao, and B. V. R. Chowdari, J. Phys. Chem. C 111 (2007) 11712-11720.
17. Z. Zhao, J. Ma, L. Xie, H. Tian, J. Zhou and Y. Hu, J. Am. Ceram. Soc. 88 (2005) 2622–2624.
18. J.F. Ni, H.H. Zhou, J.T. Chen, X.X. Zhang, Materials Letters 61 (2007) 1260–1264.
19. Y. Bai, F. Wang, F. Wu, C. Wu, L.Y. Bao, Electrochimica Acta 54 (2008) 322–327.
20. Z. Chen, J.R. Dahn, Electrochim. Acta 49 (2004) 1079.
21. K.S. Tan, M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, Journal of Power Sources 147 (2005) 241–248.
22. G. T. K. Fey, W. Li, and J. R. Dahn, J. Electrochem. Soc. 141 (1994) 2279.
23. T. Ohzuku and Y. Makimura, Chem. Lett. 1 (2001) 642.
24. N. Yabuuchi, T. Ohzuku, J. Power Sources 171 (2003) 119–121.
25. D. Liu, Z.Wang, L. Chen, Electrochim. Acta 51 (2006) 4199.
26. B. J. Hwang ,R. Santhanam, and S. G. Hu, J. Power Sources 108 (2002) 250.
27. S. T. Myung, M. H. Lee, S. Komaba, N. Kumagai, and Y. Kook, Electrochimica Acta 50 (2005) 4800.
28. Y. J. Shin, W. J. Choi, Y. S. Hong, S. Yoon, K. S. Ryu, and S. H. Chang, Solid State Ionics 177 (2006) 515.
29. G.T.K. Fey, C.S. Chang, T.P. Kumar, J. Solid State Electrochem, in press.
30. K. Du, Z. Peng, G. Hu, Y. Yang, L. Qi, J. Alloys and Compounds 476 (2009) 329-334.
31. T. Ohzuku, A. Ueda, N. Yamamoto, J. Electrochem. Soc. 142 (1995) 1431.
32. A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, S. Okada, J. B. Gooclenough, J. Electrochem. Soc. 144 (1997) 1609.
33. C. Delmas, M. Maccario, L. Croguennec, F. Lecras, F. Weill, Nature Materials 7 (2008) 665-671.
34. B. Kang, G. Ceder, Nature Materials 12 (2008) 458.
35. N. Ravet, J.B. Goodenough, S. Besner, Electrochemical Society Fall Meeting, Honolulu, Hawaii, 1999.
36. H. Huang, S.C. Yin, L.F. Nazar, Electrochemical and Solid-State Letters 4 (2001) A170-A172.
37. Z. Chen, J.R. Dahn, J. The Electrochemical Society 149 (2002) A1184-A1189.
38. R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, S. Pejovnik and J. Jamnika, J. The Electrochemical Society 152 (2005) A607-A610.
39. Y.D. Cho, G.T.K. Fey, H.M. Kao, J. Power Sources 189 (2009) 256–262.
40. M.M. Doeff, Y. Hu, F. McLarnon and R. Kostecki, Electrochemical and Solid-State Letters 6 (2003) A207-A209.
41. S.J. Kwon, C.W. Kim, W.T. Jeong, K.S. Lee, J. Power Sources 137 (2004) 93–99.
42. A.D. Spong, G. Vitins and J.R. Owenz, J. The Electrochemical Society 152 (2005) A2376-A2382.
43. H.C. Shin, W. Cho, H. Jang, J. Power Sources 159 (2006) 1383–1388.
44. G. Meligrana, C. Gerbaldi, A. Tuelb, S. Bodoardo, N. Penazzi, J. Power Sources 160 (2006) 516–522.
45. A.A. Salah, A. Mauger, K. Zaghib, J.B. Goodenough, N. Ravet, M. Gauthier, F. Gendron and C.M. Juliena, J. The Electrochemical Society 153 (2006) A1692-A1701.
46. M.R. Yang, T.H. Teng, S.H. Wu, J. Power Sources 159 (2006) 307–311.
47. D. Choi, P.N. Kumta, J. Power Sources 163 (2007) 1064–1069.
48. F. Gao, Z. Tang, J. Xue, Electrochimica Acta 53 (2007) 1939–1944.
49. G.T.K. Fey, T.L. Lu, F.Y. Wu, W.H. Li, J. Solid State Electrochem 12 (2008) 825–833.
50. J.M. Chen, C.H. Hsu, Y.R. Lin, M.H. Hsiao, G.T.K. Fey, J. Power Sources 184 (2008) 498–502.
51. H.P. Liu, Z.X. Wang, X.H. Li, H.J. Guo, W.J. Peng, Y.H. Zhang, Q.Y. Hu, J. Power Sources 184 (2008) 469–472.
52. A. Vadivel Murugan, T. Muraliganth, A. Manthiram, Electrochemistry Communications 10 (2008) 903–906.
53. C.Z. Lu, G.T.K. Fey, H.M. Kao, J. Power Sources 189 (2009) 155–162.
54. G.T.K. Fey, T.L. Lu, J. Power Sources 178 (2008) 807-814.
55. X.Z. Liao, Z.F. Ma, L. Wang, X.M. Zhang, Y. Jiang, Y.S. He, Electrochemical and Solid State Letters 7 (2004) A522-A525.
56. H. Liu, P. Zhang, G. C. Li, Q. Wu, Y. P. Wu, J. Solid State Electrochem 12 (2008) 1011-1015.
57. L.N. Wang, Z.G. Zhang, K.L. Zhang, J. Power Sources 167 (2007) 200-205.
58. C.H. Mi, X.G. Zhang, X.B. Zhao, H.L. Li, J. Alloys and Compounds 424 (2006) 327-333.
59. K.F. Hsu, S.Y. Tsay, B.J. Hwang, J. Power Sources 146 (2005) 529–533.
60. D. Shanmukaraj, G.X. Wang, R. Muruganc, H.K. Liu, Materials Science and Engineering B 149 (2008) 93–98.
61. C.Y. Ouyang, S.Q. Shi, Z.X. Wang, H. Li, X.J. Huang, L.Q. Chen, J. Physics Condensed Matter 16 (2004) 2265–2272.
62. M.R. Roberts, G. Vitins, J.R. Owen, J. Power Sources 179 (2008) 754–762.
63. C. Delacourt, C. Wurm, L. Laffont, J.B. Leriche, C. Masquelier, Solid State Ionics 177 (2006) 333-341.
64. S.H. Wu, M.S. Chen, C.J. Chien, Y.P. Fu, J. Power Sources 189 (2009) 440-444.
65. H. Liu, Q. Cao, L.J. Fu, C. Li, Y.P. Wu, H.Q. Wu, Electrochemistry Communications 8 (2006) 1553-1557.
66. Y.D. Cho, G.T.K. Fey, H.M. Kao, J. Solid State Electrochem 12 (2008) 815-823.
67. Y. Xia, M. Yoshio, H. Noguchi, Electrochimica Acta 52 (2006) 240–245.
68. M. Gaberscek, R. Dominko, J. Jamnik, Electrochemistry Communications 9 (2007) 2778–2783.
69. G.T.K. Fey, Y.G. Chen, H.M. Kao, J. Power Sources 189 (2009) 169-178.
70. J. Ying, M. Lei, C. Jiang, C. Wan, X. He, J. Li, L. Wang, J. Ren, J. Power Sources 158 (2006) 543–549.
71. H.M. Xie, R.S. Wang, J.R. Ying, L.Y. Zhang, A.F. Jalbout, H.Y. Yu, G.L. Yang, X.M. Pan, Z.M. Su, Adv. Mater. 18 (2006) 2609–2613.
72. F. Gao, Z. Tang, J. Xue, J. University of Science and Technology Beijing 15 (2008) 802.
73. D.K. Kim, H.M. Park, S.J. Jung, Y. U. Jeong, J.H. Lee, J.J. Kim, J. Power Sources 159 (2006) 237–24.
74. B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd edn., chapter 5.2, Prentice Hall Publishers, New Jersey, USA, 2001.
75. L. Yang, L. Jiao, Y. Miao, H. Yuan, J. Solid State Electrochem 11 (2008) 1432-1433.
76. S. Zhang, Electrochimica Acta 52 (2007) 7337–7342.
77. L. J. van der Pauw, Phil. Res. Rep. 13(1958) 1.
78. M. I. Current and M.J. Market, Ion Implantation: Science and Technology (J.F. Ziegler, ed.), Academic Press, Orlando, FL (1984) 487.
79. J.R. Dahn, J. Jiang, L.M. Moshurchak, M.D. Fleischauer, C. Buhrmester, L.J. Krause, J. Electrochem. Soc. 152 (2005) A1283.
80. 林佩芬, “STOBA inside 鋰電池好安心”, 工業技術與資訊, 199期, 24-27頁, 2008年5月.
81. J. Jiang, J.R. Dahn, Electrochem. Commun. 6 (2004) 724.
82. K. Zaghib, M. Dontigny, P. Charest, J.F. Labrecquea, A. Guerfi, M. Kopec, A. Mauger, F. Gendron, C.M. Julien, J. Power Sources 185 (2008) 698–710.
83. W. Porcher, P. Moreau, B. Lestriez, S. Jouanneau and D. Guyomard, Electrochemical and Solid-State Letters 11 (2008) A4-A8.
84. 維基百科(2001.12.19) http://en.wikipedia.org/wiki/Infrared_spectroscopy
85. H.P. Liu, Z.X. Wang, X.H. Li, H.J. Guo, W.J. Peng, Y.H. Zhang, Q.Y. Hu, J. Power Sources 184 (2008) 469-472.
86. M.M. Doeff, Y. Hu, F. McLarnon and R. Kostecki, Electrochemical and Solid-State Letters 6 (2003) A207-A209.
87. Y. Hu, M.M. Doeff, R. Kostecki and R. Fin˜ones, J. The Electrochemical Society 151 (2004) A1279-A1285.
88. M.M. Doeff, J.D. Wilcox, R. Kostecki and G. Lau, J. Power Sources 163 (2006) 180-184.
89. H. Gabrisch, J.D. Wilcox and M.M. Doeff, Electrochemical and Solid-State Letters 9 (2006) A360-A363.
90. S.H. Luo, Z.L. Tang, J.B. Lu and Z.T. Zhang, Chinese Chemical Letters 18 (2007) 237-240.
指導教授 費定國(Ting-Kuo Fey) 審核日期 2009-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明