以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:157 、訪客IP:3.145.178.88
姓名 林惠敏(Hui-min Lin) 查詢紙本館藏 畢業系所 化學工程與材料工程學系 論文名稱 均一粒徑次微米染料球之合成與其自組裝排列之研究
(The study on preparation and self-assembly of monodispersed dye-containing smbmicrospheres)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本論文主要探討具有不同表面官能基、形態、結構均一粒徑染料球之合成,以及其自組裝排列形成光子晶體之研究。
首先利用無乳化劑乳化聚合以苯乙烯(St)或甲基丙烯酸甲酯(MMA)做為單體,添加共單體:對-苯乙烯硫酸鈉鹽(NaSS)、甲基丙烯酸(MAA)或甲基丙烯酸羥乙酯(HEMA)合成均一粒徑次微米球。其中P(St+NaSS)經溶脹聚合法導入光起始劑4-乙烯基苯基N,N-二乙基硫代氨基甲酸酯(VBDC)於次微米球中,再以光誘導原子轉移自由基聚合(ATRP)製備刷狀次微米球。本研究並以溶劑導入法將solvent black 34黑色染料導入特定粒徑之次微米球中製成染料球,最後利用自組裝法使次微米球排列成光子晶體。
次微米染料球以傅立葉轉換紅外線光譜儀(FTIR)確認特性,以掃描式電子顯微鏡(SEM)觀測表面形態與粒徑,及動態粒徑分析儀(DLS)量測水力粒徑,而光子晶體之光學特性則利用紫外線-可見光光譜儀(UV-Vis)來鑑定。
結果顯示藉由共單體的種類與添加量可控制次微米球粒徑大小,成功合成出100-600 nm之均一次微米球。經由光誘導ATRP也可成功製備出具有PMMA鏈之刷狀次微米球。在導入染料部分,次微米染料球之粒徑(200-300 nm)並不會因添加染料而改變且Cv值(小於4 %),而染料最多可導入1 wt%。以PS次微米球自組裝排列之光子晶體顯示對應其粒徑之結構性色彩,而PMMA次微米球排列之光子晶體,由於PMMA本身有頸收的特性使得實際能隙位置會比由粒徑計算理論值大;提升乳液固含量與添加染料皆會使光子晶體結構色彩更加鮮明;此外刷狀次微米球可提升成膜性。摘要(英) The synthesis and self-assembly of monodispersed dye-containing submicrospheres with different functional group and morphology were studied in this thesis.
First of all, monodispersed submicrospheres were prepared by soap-free emulsion polymerization in the present of styrene (St) or methyl methacrylate (MMA) as monomer and sodium p-styrenesulfonate (NaSS), methacrylic acid (MAA) or hydroxyethyl methacrylate (HEMA) as comonomer. Afterward, the ATRP initiator 4-vinylbenzyl N,N-diethyldithiocarbamate (VBDC) were introduced to P(St+NaSS) submicrospheres by swelling polymerization, then utilizing photo-induced atom transfer radical polymerization (ATRP) to prepare PMMA brush. The dye-containing submicrospheres were prepared by solvent introducing method with different content of solvent black 34. Finally, photonic crystals were obtained by self-assembly of submicrospheres.
The functional groups of submicrospheres were confirmed by Fourier Transform Infrared Spectroscopy (FTIR). The diameters and hydrodynamic diameter were observed from Scanning electron microscope (SEM) and Dynamic light scattering (DLS), respectively. The photonic bandgap (PBG) were measured by Ultraviolet-visible spectroscopy (UV-Vis).
The results showed that 100-600 nm submicrospheres can be synthesized by adding different types and amount of comonomer. Submicrospheres with PMMA brush can be prepared successfully by photo-induced ATRP. For dye-containing submicrospheres, submicrospheres maintain their diameters with low Cv value(< 4 %), the maximum content of solvent black 34 in these was 1 wt%. The experimental PBG of photonic crystals in PS series were consistent with calculated PBG. Nevertheless, PBG in PMMA series weren’t corresponding because of necking. The structure color would be more vivid when submicrospheres with dye or higher solid content. In addition, brush submicrospheres can promote the film-forming ability.關鍵字(中) ★ 均一粒徑次微米球
★ 無乳化劑乳化聚合
★ 光誘導原子轉移自由基聚合
★ 溶劑導入法
★ 自組裝排列
★ 光子晶體關鍵字(英) ★ Monodispersed submicrospheres
★ Soap-free emulsion polymerization
★ Photo-induced ATRP
★ Solvent inducing method
★ Self-assembly
★ Photonic crystals論文目次 中文摘要…………………………………………………………………………I
英文摘要………………………………………………………………………II
誌謝……………………………………………………………………………IV
目錄……………………………………………………………………………..V
表目錄………………………………………………………………………VIII
圖目錄……………………………………………………………………….….X
第一章 緒論…………………………………………………………………..1
1-1 均一粒徑高分子球簡介及文獻回顧……………………………………1
1-2 高分子球接枝簡介及文獻回顧……………………………...………….2
1-3 填充染料至均一粒徑高分子球簡介及文獻回顧………………………4
1-4 光子晶體之介紹及文獻回顧……………………………………………5
1-5 研究動機及目的…………………………………………………………8
第二章 實驗…………………………………………………………………….9
2-1 實驗藥品…………………………………………………………………9
2-2 實驗儀器……………………………………………………………..…11
2-3 實驗方法………………………………………………………………..12
2-3-1 製備聚苯乙烯及聚甲基丙烯酸甲酯次微米球…………………..12
2-3-2 以紫外光誘導原子轉移自由基聚合法製備刷狀次微米球……..12
2-3-3 利用溶劑導入法製備次微米染料球…………………………..…14
2-3-4 利用自組裝排列製備光子晶體…………………………………..15
2-4 儀器分析………………………………………………………………..15
2-4-1 傅立葉轉換紅外線光譜儀(FTIR) ………………………………..15
2-4-2 掃描式電子顯微鏡(SEM) …………………….…………………..15
2-4-3 動態粒徑分析儀(DLS) ……………….……….……...…………..15
2-4-4 紫外-可見光光譜儀(UV-Vis) ……………………………...……..15
第三章 結果與討論…………………………………………...………………16
3-1均一粒徑次微米球之製備……………………………...………………16
3-1-1共單體對-苯乙烯磺酸鈉鹽濃度對次微米球粒徑及表面形態之影響…………………………………………………………………17
3-1-1-1以苯乙烯為單體製備次微米球之研究…………….…………17
3-1-1-2以甲基丙烯酸甲酯為單體製備次微米球之研究…………….24
3-1-2共單體甲基丙烯酸濃度對次微米球粒徑及表面形態之影響…...29
3-1-2-1以苯乙烯為單體製備次微米球之研究………………………..29
3-1-2-2以甲基丙烯酸甲酯為單體製備次微米球之研究………….….36
3-1-3共單體甲基丙烯酸羥乙酯濃度對次微米球粒徑及表面形態之影響…………………………………………………………….……..43
3-1-3-1以苯乙烯為單體製備次微米球之研究………………………..43
3-1-3-2以甲基丙烯酸甲酯為單體製備次微米球之研究……………..50
3-2以紫外光誘導原子轉移自由基聚合法製備刷狀次微米球之研究…...56
3-2-1利用溶脹聚合法導入4-乙烯基苯基N,N-二乙基硫代氨基甲酸酯…………………………………………………...………………56
3-2-2 刷狀次微米球粒徑及表面形態之探討………………..…………60
3-3利用溶劑導入法製備次微米染料球之研究…………………………..65
3-3-1染料濃度對次微米球粒徑及表面形態之影響……………………65
3-3-2次微米球尺寸改變量之探討………………………………………69
3-4 利用自組裝排列製備光子晶體之研究………………………………..71
3-4-1 溫度對自組裝排列之影響………………………………………..72
3-4-2 次微米球表面形態與官能基對自組裝排列之影響……………..76
3-4-3 次微米球固含量之影響……………………………………...…...81
3-4-4 染料濃度對自組裝排列之影響…………………………………..86
3-4-5 刷狀次微米球之自組裝排列…………………………………..…94
第四章 結論…………………………………………………………………96
參考文獻………………………………………………………………………98參考文獻 [1] 笠井澄, 高分子, 44 (1995) 290
[2] 川瀬進, Sen’i Gakkaishi, 60(7) (2004) 371
[3] T. Matsumoto, A. Ochi, Kobunshi Kagaku, 22 (1965) 481
[4] D. Nagao, T. Sakamoto, H. Konno, S. C. Gu, M. Konno, Langmuir, 22 (2006) 10958
[5] Z. Z. Gu, H.H. Chen, S. Zhang, L. G. Sun, Z. Y. Xie, Y. Y. Ge, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 302 (2007) 312
[6] T. Gong, C. C. Wang, Journal of Materials Science, 43 (2008) 1926
[7] Y. Wang, J. X. Zheng, W. J. Brittain, S. Z. D. Cheng, Journal of Polymer Science: Part A: Polymer Chemistry, 44 (2006) 5608
[8] 張明仁 “聚烯烴/氫氧化鎂奈米複合材料之合成與應用” 中原大學化學系博士論文 (2007)
[9] K. Matyjaszewski, J. H. Xia, Chemical. Reviews., 101 (2001) 2921
[10] V. Mittal, Journal of Colloid and Interface Science, 314 (2007) 141
[11] P. Li, J. Zhu, P. Sunintaboon, F. W. Harris, Langmuir,18 (2002) 8641
[12] T. E. Patten, K. Matyjaszewski, Advanced Materials., 10(12) (1998) 901
[13] K. Ishizu, H. Katsuhara, Designed Monomers and Polymers, 9(2) (2006) 99
[14] B. L. Liu, X. Deng, S.S. Cao, S.J. Li, R. Luo, Applied Surface Science, 252 (2006) 2235
[15] K. Nagase, J. Kobayashi, A. Kikuchi, Y. Akiyama, H. Kanazawa, T. Okano, Langmuir, 23 (2007) 9409
[16] Y. H. Kim, W. T. FORD, T. H. MOUREY, Journal of Polymer Science: Part A: Polymer Chemistry, 45 (2007) 4623
[17] M. Spiniello, A. Blencowe, G. G. Qiao, Journal of Polymer Science: Part A: Polymer Chemistry, 46 (2008) 2422
[18] T. Arita, Y. Kayama, K. Ohno, Y. Tsujii, T. Fukuda, Polymer, 49 (2008) 2426
[19] D. G. Yu, J. H. An, J. Y. Bae, S. D. Ahn, S. Y. Kang, K. S. Suh, Macromolecules, 38 (2005) 7485
[20] A. F. Mansour, R. M. Ahmed, A. H. Bassyouni, G. M. Nasr, International Journal of Polymeric Materials, 56 (2007) 651
[21] H. Ow, D. R. Larson, M. Srivastava, B. A. Baird, W. W. Webb, U. Wiesner, Nano Letters, 5(1) (2005) 113
[22] M. Muller, R. Zentel, T. Maka, S. G. Romanov, C. M. S. Torres, Chemistry of Materials,12(8) ( 2000) 2508
[23] F. Tronc, M. Li, J. P. Lu, M. A. Winnik, B. L. Kaul, J. C. Graciet, Journal of Polymer Science: Part A: Polymer Chemistry, 41(6) (2003) 766
[24] D. G. Yu, J. H. An, J. Y. Bae, D. J. Jung, S. Kim, S. D. Ahn, S. Y. Kang, K. S. Suh, Chemistry of Materials, 16(23) (2004) 4693
[25] J. S. Song, F. Tronc, M. A. Winnik, Polymer, 47(3) (2006) 817
[26] 陳韻婷 “製備次微米級均一粒徑之染料球” 國立中央大學化學工程與材料工程學系碩士論文 (2007)
[27] H. Liu, M. Z. Yates, Langmuir, 18(16) (2002) 6066
[28] R. Arshady, Biomaterials, 14(1) (1993) 5
[29] W. Yin, Z. Dong, X. Chen, N. Finn, M.Z. Yates, Journal of Supercritical Fluids, 41 (2007) 293
[30] 鍾儀文 “以膠體製程製備光子晶體及其性質之探討” 國立成功大學材料科學及工程研究所博士論文 (2006)
[31] 郭政雨 “膠體粒子系統於光子晶體、光催化與染料敏化太陽能電池之應用” 國立成功大學材料科學及工程研究所博士論文 (2007)
[32] S. Kinoshita, S. Yoshioka, Y. FUJII, N. Okamoto, Forma, 17 (2002) 103
[33] W. Jiang, L. Gu, X. C. Chen, R. T. Chen, Solid-State Electronics, 51 (2007) 1278
[34] 蔡雅芝 物理雙月刊 二十一卷四期 (1999) 445
[35] G. I. N. Waterhouse, M. R. Waterland, Polyhedron, 26 (2007) 356
[36] Y. L. Ruan, M. K. Kim, Y. H. Lee, B. Luther-Davies, R. Andrei, Applied Physics Letters, 90(7) (2007) 071102
[37] H. J. Yu, J. Z. Yu, S. W. Chen, Bandaoti Xuebao, 27 (2006) 1894
[38] P. Srinivasan, R. C. Rumpf, E. G. Johnson, Proceedings of The International Society for Optical Engineering, 6110 (2006) 611006
[39] A. Imai, S. Kunimatsu, K. Akiyama, Y. Terai, Y. Maeda, Thin Solid Films, 515(22) (2007) 8162
[40] Y. Xia, B. Gates, Y. Yin, Y. Lu, Advanced Material,10 (2000) 693
[41] O. Vickreva, O. Kalinina, E. Kumacheva, Advanced Materials,12(2) (2000) 110
[42] Q. B. Meng, Z. Z. Gu, O. Sato, A. Fujishima, Applied Physics Letters, 77(26) (2000) 4313
[43] Y. Lin, P. R. Herman, W. Xu, Journal of Applied Physics, 102(7) (2007) 073106
[44] Z. Z. Gu, Q.B. Meng, S. Hayami, A. Fujishima, O. Sato, Journal of Applied Physics, 90(4) (2001) 2042
[45] E. Yablonovitch, Physical Review Letters, 58(20) (1987) 2059
[46] S. John, Physical Review Letters, 58(23) (1987) 2486
[47] K. Ohno, T. Morinaga, S. Takeno, Y. Tsujii, T. Fukuda, Macromolecules, 39(3) (2006) 1245
[48] J. X. Wang, Y. Q. Wen, X. J. Feng, Y. L. Song, L. Jiang, Macromolecular Rapid Communications, 27(3) (2006) 188
[49] J. L. Li, S. A. Zhang, H. H. Chen, Z. Z. Gu, Z. H. Lu, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 299(1-3) (2007) 54
[50] J. Wang, S. Ahl, Q. Li, M. Kreiter, T. Neumann, K. Burkert, W. Knoll, U. Jonas, Journal of Materials Chemistry, 18(9) (2008) 981
[51] Y. Deng, C. Liu, J. Liu, F. Zhang, T. Yu, D. Gu, D. Zhao, Journal of Materials Chemistry, 18(4) (2008) 408
[52] Z. Z Gu, Y. H. Yu, H. Zhang, Z. Lu, A. Fujishima, O. Sato, Applied Physics A:materials science and processing, 81(1) (2005) 47指導教授 陳暉(Hui Chen) 審核日期 2008-6-22 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare