博碩士論文 963204057 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:66 、訪客IP:52.14.236.216
姓名 周俊仁(Chun-jen Chou)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 改質鎳鈷硼觸媒在對氯硝基苯氫化反應的研究
(Modified NiCoB catalyst applied on p-CNB hydrogenation reaction)
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 非晶相鎳鈷硼合金觸媒於對-氯硝基苯氫化反應上有很好的催化活性和選擇性,此研究中,主要分為質傳探討及活性探討兩大部分。質傳方面,引用了氣體滯留、外部質傳與內部質傳等觀念來評估在溫度為353 K,壓力為1.2 MPa,與轉速為500 rpm的條件下,鎳鈷硼觸媒應用在對氯硝基苯的反應性質,計算結果證明在設定條件下,質傳阻力已破除,為反應控制狀態。在活性探討方面,以硼氫化鈉為還原劑,利用醋酸鎳、醋酸鈷和偏鎢酸銨為前驅鹽類,以化學還原法製備改質後的非晶相鎳硼和鎳鈷硼合金觸媒,製備條件為:鎳/鈷/硼之莫耳比固定為1: 0.1: 3,鎳/鎢之莫耳比為0、0.1、0.3、0.5、0.7、0.9與1.0;製備溶劑使用50 vol %甲醇之混合溶劑;為避免製備過程中,觸媒被溶氧氧化使得活性降低,因此在製備環境中通以氮氣流,並探討其物理與化學特性於對-氯硝基苯氫化反應上的影響。以X光繞射儀、穿透式電子顯微鏡、高解析度穿透式電子顯微鏡、X光能譜散佈分析儀和X光光電子能譜儀等儀器鑑定其物理、化學特性和表面性質;以液相選擇性對-氯硝基苯氫化反應來測試觸媒的活性與選擇性,反應條件設定在:反應器為半批式反應器 (Parr Reactor Model 4842);反應溫度為353 K;壓力為1.2 MPa;攪拌速率500 rpm;反應溶劑為甲醇;結果顯示添加劑的加入,能強化觸媒的熱穩定度、活性位置的分散性,提升反應的活性和選擇率,在p-CNB轉化率為100%時,對主產物對-氯苯胺的選擇率皆大於90 %,其中以鎳/鎢之莫耳比為0.7之觸媒活性表現最佳。而後針對未改質、鎢改質與鉬改質之鎳鈷硼觸媒進行觸媒壽命測試,在相同的反應條件下,連續進行3次批次反應測試;結果顯示鎢雖能改善觸媒的穩定性,卻無法延長鎳鈷硼的觸媒壽命,鉬改質之鎳鈷硼觸媒則能有效地使觸媒壽命延長。最後我們做了金觸媒與白金蜂巢狀觸媒應用在對氯硝基苯氫化反應的活性測試,金觸媒表現出在選擇率之優勢,蜂巢狀觸媒則顯示了在異相氫化反應上分離的方便性。
摘要(英) Nanosized NiCoB alloy catalyst has been reported to be a good catalyst for the liquid phase hydrogenation reactions due to their excellent activity and selectivity. In this research, Two investigations were carried out on the NiCoB catalyst.
First, the effects of gas-holdup, external mass transfer, intra-particle mass transfer were studied based on the theoretical calculations. The results demonstrated that the hydrogenation reaction under the experimental conditions we adopted was reaction-controlled.
Second, W was used as the additive to modify the properties of NiCoB catalyst. A series of W–doped NiCoB catalysts with various W/Ni molar ratios were synthesized by chemical reduction of nickel acetate, cobalt acetate and ammonium metatungstate. Sodium borohydride in 50 vol. % methanol/water mixed solvent was used as the reducing agent. The preparation was carried out at room temperature under vigorous stirring and nitrogen stream was used as the curtain gas to remove dissolved oxygen in solvent. The atomic ratio of Ni/Co was fixed at 10; and W/Ni ratios were 0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1.0, respectively. In order to fully reduce Ni and Co cations, excess amount of NaBH4 was added (B/Ni atomic ratio was 3). These catalysts were characterized by X–ray diffraction, transmission electron microscopy, high resolution transmission electron microscopy, energy dispersive spectra, X-ray photoelectron spectroscopy and differential scanning calorimetry. The catalytic properties of W-NiCoB catalysts were studied on hydrogenation of p–chloronitrobenzene (p-CNB). The conditions for hydrogenation reaction were 1.2 MPa H2 pressure, 353 K reaction temperature and 500 rpm stirring speed. Methanol was used as the solvent, the concentration of p-CNB was 0.2 M (2.54g p–CNB in 80 ml methanol) and the amount of W-NiCoB catalyst was 0.002 mol. The results showed that the increase of W content made the particle size of NiCoB smaller. W was mainly in the form of hydroxide and acted as a spacer, which could keep NiCoB in amorphous state, and would suppress sintering in reaction. The sample with W/Ni atomic ratio of 0.7 had the highest activity for p–CNB hydrogenation. The selectivities of p-chloroaniline (p-CAN) for W-NiCoB catalysts were also very high. It demonstrated that W-doped NiCoB catalysts were suitable for liquid phase hydrogenation catalyst. Then, the deactivation tests to compare the catalytic life of NiCoB, W-NiCoB and Mo-NiCoB (the best result done in our lab) were also studied. The results showed that only Mo additive could extend the life of NiCoB. After the hydrogenation reaction, the NiCoB catalyst sintered to numerous large grains, whereas, W-NiCoB turned into the form of milkly-white powder. However, Mo-NiCoB retained the original black nano-clusters, the catalytic activities were maintained at high level after 3 batch runs.
Additionally, gold catalyst for p-CNB hydrogenation with high selectivity and the monolith catalyst on this kind of reaction were also elementary studied.
關鍵字(中) ★ 非晶相鎳鈷硼合金觸媒
★ 液相氫化反應
★ 對氯硝基苯
★ 對氯苯胺
關鍵字(英) ★ p-chloroaniline
★ p-chloronitrobenzene
★ hydrogenation
★ NiCoB nanoalloy catalyst
論文目次 中文摘要 i
Abstract ii
誌謝 iv
Table of Contents v
List of Tables viii
List of Figures ix
List of Figures ix
List of Schemes xi
Chapter 1 Introduction 1
1.1 Introduction 1
1.2 References 4
Chapter 2 Literature Review 6
2.1 Amorphous nanoalloy catalysts of boride metal 6
2.2 Effect of promoter 13
2.3 Liquid phase hydrogenation of p-chloronitrobenzene 16
2.4 Others 20
2.5 References 21
Chapter 3 Experimental 28
3.1 Materials 28
3.2 Preparation of catalysts 28
3.3 The characterization of catalysts 29
3.3.1 X-ray diffraction (XRD) 29
3.3.2 Transmission electron microscopy (TEM) 29
3.3.3 Transmission electron microscopy & energy
dispersive spectrometer (HRTEM & EDS) 30
3.3.4 X-ray photoelectron spectroscopy (XPS) 30
3.3.5 Differential scanning calorimetry (DSC) 31
3.4 Catalytic activity test 31
3.5 References 32
Chapter 4 Mass transfer effect on liquid phase
hydrogenation of p-chloronitrobenzene 35
4.1 Introduction 35
4.2 The approach to evaluate gas-holdup effect 36
4.3 The approach to evaluate the external mass
transfer effect 38
4.4 The approach to evaluate the intra-particle (pore
diffusion) mass transfer effect 43
4.5 The estimations for the hydrogenation of p-CNB
over the NiCoB catalyst under 353K, 1.2 MPa and
0.2M p-CNB 46
4.5.1 Gas-holdup effect 46
4.6 Conclusion 52
4.7 References 52
Chapter 5 Hydrogenation of p-chloronitrobenzene on W-NiCoB
nanoalloy catalysts 56
5.0 Abstract 56
5.1 Introduction 56
5.2 Experimental 58
5.2.1 Catalyst preparation 58
5.2.2 Catalyst characterization 59
5.2.3 Catalytic activity 60
5.3 Results and discussion 60
5.3.1 XRD 60
5.3.2 TEM/ HRTEM & EDS 61
5.3.3 XPS 62
5.3.4 DSC 65
5.3.5 Reaction test 65
5.3.6 Reaction rate constant 67
5.4 Conclusion 69
5.5 References 70
Chapter 6 Life test for modified NiCoB catalysts 89
6.1 Introduction 89
6.2 Experimental 90
6.2.1 Catalyst preparation 90
6.2.2 Catalyst characterization 91
6.2.3 Life-time test 91
6.3 Results and discussion 91
6.3.1 Life-time test 91
6.3.2 DSC 92
6.4 Conclusion 93
6.5 References 93
Chapter 7 Summary 100
7.1 Mass transfer effect on liquid phase hydrogenation of
p-chloronitrobenzene 100
7.2 Hydrogenation of p-chloronitrobenzene on W-NiCoB
nanoalloy catalysts 101
7.3 Life test for modified NiCoB catalysts 102
Appendix A 103
Appendix B 114
參考文獻 B. Rajesh, N. Sasirekha, S. P. Lee, H. Y. Kuo, Y. W. Chen. “Investigation of Fe–P–B ultrafine amorphous nanomaterials: Influence of synthesis parameters on physicochemical and catalytic properties”, J. Mol. Catal. A: Chem., 289 (2008) pp. 69-75.
Brown, H. C. and Brown, C. A., “The reaction of sodium borohydride with nickel acetate in aqueous solution-A convenient synthesis of an active nickel hydrogenation catalyst of low isomerizing tendency”, J. Am. Chem. Soc. 85 (1963) p. 1003.
Chen, Y. Z. and Chen, Y. C., “Hydrogenation of para-chloronitrobenzene over nickel borides”, Appl. Catal., A 115 (1994) 45-47.
Chen, Y., “Chemical preparation and characterization of metal-metalloid ultrafine amorphous alloy particles”, Catal. Today 44 (1998) 3-16.
Chen, X. F., Li, H. X., Luo, H. S. and Qiao, M. H., “Liquid phase hydrogenation of furfural to furfuryl alcohol over Mo-doped Co-B amorphous alloy catalyst”, Appl. Catal. A: Gen. 233 (2002) 13-20.
Chen, L. F., Chen, Y. W., “Effect of additive (W, Mo, and Ru) on Ni-B amorphous alloy catalyst in hydrogenation of p-chloronitrobenzene”, Ind. Eng. Chem. Res. 45 (2006) 8866-8873.
Coq, B., Tijani, A. and Figueras, F., “Influence of alloying platinum for the hydrogenation of p-chloronitrobenzene over PtM/Al2O3 catalysts with M=Sn, Pb, Ge, Al, Zn,” J. Mol. Catal. 71 (1992) 317-333.
Coq, B., Tijani, A., Dutartre, R. and Figueras, F., “Influence of support and metallic precursor on the hydrogenation of p-chloronitrobenzene over supported platinum catalysts,” J. Mol. Catal. 79 (1993) 253-264.
Dai, W. L., Qiao, M. H. and Deng, J. F., “XPS studies of a novel amorphous Ni-Co-W-B alloy powder”, Appl. Surf. Sci. 120 (1997) 119-124.
Deng, J. F., Li, H. and Wang, W. J., “Progress in design of new amorphous alloy catalysts”, Catal. Today 51 (1999) 113-125.
Han, X. X., Zhou, R. X., Zheng, X. M. and Jiang, H., “Effect of rare earths on the hydrogenation properties of p-chloronitrobenzene over polymer-anchored platinum catalysts”, J. Mol. Catal. 193 (2003) 103-108.
Han, X. X., Zhou, R. X., Lai, G. H. and Zheng, X. M., “Influence of support and transition metal (Cr, Mn, Fe, Co, Ni and Cu) on the hydrogenation of p-chloronitrobenzene over supported platinum catalysts”, Catal. Today 93-95 (2004) 433-437.
Han, X. X., Zhou, R. X., Lai, G. H., Yue, B. H. and Zheng, X. M., “Effect of transition metal (Cr, Mn, Fe, Co, Ni and Cu) on the hydrogenation properties of chloronitrobenzene over Pt/TiO2 catalysts”, J. Mol. Catal. A: Chem. 209 (2004) 83-87.
Hou, Y. J., Wang, Y. Q., He, F., Han, S., Mi, Z. T., Wu, W. and Min, E., “Liquid pahse hydrogenation of 2-ethylanthraquinone over La-doped Ni-B amorphous alloy catalysts”, Mat. Lett. 58 (2004) 1267-1271.
Junfeng G., David A. J., Brian F. G. J., “Exploring the structural complexities of metal-metalloid nanoparticles: a Ni.B case as catalyst”, CHEMISTRY-A EUROPEAN JOURNAL 15 (2009) 1134-1143.
Lee, S. P. and Chen, Y. W., “Nitrobenzene hydrogenation on Ni-P, Ni-B and Ni-P-B ultrafine materials”, J. Mol. Catal. A: Chem. 152 (2000) 213-223.
Li, H., Li, H. X., Dai, W. L., Wang, W. J. and Fang, Z. G., “XPS studies on surface electronic characteristics of Ni-B and Ni-P amorphous alloy and its correlation to their catalytic properties”, Appl. Sur. Sci. 152 (1999) 25-34.
Li, H., Li, H. X., Wang, W. J. and Deng, J. F., “Excellent activity of ultrafine Co-B amorphous alloy catalyst in glucose hydrogenation”, Chem. Lett., (1999) 629-630.
Li, H. X., Luo, H. S., Zhuang, L., Dai, W. L. and Qiao, M. H., “Liquid phase hydrogenation of furfrual to furfuryl alcohol over the Fe-promoted Ni-B amorphous alloy catalysts”, J. Mol. Catal. A: Chem. 203 (2003) 267-275.
Li, H. X., Li, H., Dai, W. L. and Qiao, M. H., “Preparation of the Ni-B amorphous alloys with variable boron content and its correlation to the hydrogenation activity”, Appl. Catal. A: Gen. 238 (2003) 119-130.
Li, H. X., Wu, Y. D., Zhang, J., Dai, W. L. and Qiao, M. H., “Liquid phase acetonitrile hydrogenation to ethylamine over a highly active and selective Ni-Co-B amorphous alloy catalyst”, Appl. Catal. A: Gen. 275 (2004) 199-206.
Li, H., Zhao, Q. F. and Li, H. X., “Selective hydrogenation of p-chloronitrobenzene over Ni-P-B amorphous catalyst and synergistic promoting effect of B and P”, J. Mol. Catal. A: Chem. 285 (2008) 29-35.
Liu, M., Yu, W., Liu, H. and Zheng, J., “Preparation and characterization of polymer-Stabilized ruthenium–platinum and ruthenium–palladium bimetallic Colloids and their catalytic properties for hydrogenation of o-chloronitrobenzene”, J. Colloid Interface Sci. 214 (1999) 231-237.
Liu, M. H., Yu, W. Y. and Liu, H. F., “Selective hydrogenation of o-chloronitrobenzene over polymer-stabilized ruthenium colloidal catalysts”, J. Mol. Catal. A: Chem. 138 (1999) 295-303.
Liu, Y. C., Huang, C. Y. and Chen, Y. W., “Hydrogenation of p-chloronitrobenzene on Ni-B nanometal catalysts”, J. Nanopart. Res. 8 (2006) 223-234.
Liu, Y. C., Huang, C. Y. and Chen, Y. W., “Liquid-phase selective hydrogenation of p-chloronitrobenzene on Ni-P-B nanocatalysts”, Ind. Eng. Chem. Res. 45 (2006) 62-69.
Liu, Y. C. and Chen, Y. W., “Hydrogenation of p-chloronitrobenzene on lanthanum-promoted NiB nanometal catalysts”, Ind. Eng. Chem. Res. 45 (2006) 2973-2980.
Lu, L. H., Ma, Y. H., Guo, F., Ma, R. H., Xin, J. N., Wang, Y. and Kenji, N., “Structural characteristics of Mo modified skeletal Ni and its catalysis for liquid phase hydrogenation of nitro T-acid to T-acid”, Fine Chem. NO.3, 25 (2008) 251-255.
Ma, Y. F., Li, W., Zhang, M. G., Zhou, Y. And Tao, K. Y., “Preparation and catalytic properties of amorphous alloys in hydrogenation of sulfolene”, Appl. Catal. A: Gen. 246 (2003) 215-223.
Ning, J. B., Xu, J., Liu, J., Miao, H., Ma, H., Chen, C. Li, X. Q., Zhou, L. P. and Yu, W. Q., “ A remarkable promoting effect of water addition on selective hydrogenation of p-chloronitrobenzenein ethanol”, Catal. Commun. 8 (2007) 1763-1766.
N. Mahata, A. F. Cunha, J. J. M. Órfão and J. L. Figueiredo, “Hydrogenation of chloronitrobenzenes over filamentous carbon stabilized nickel nanoparticles”, Catal. Commun. 10 (2009) 1203-1206.
Parks, G. L., Pease, M. L., Burns, A. W., Layman, K. A., Bussell, M. E., Wang, X., Hanson, J. and Rodriguez, J. A., “Characterization and hydrodesulfurization properties of catalysts derived from amorphous metal-boron materials”, J. Catal. 246 (2007) 277-292.
Schlesinger, H. I. and Brown, H. C., “New Developments in the chemistry of diborane and borohydrides, I. General Summary”, J. Am. Chem. Soc., 75, 186. Seo, G. and Chon, H., 1981. “Hydrogenation of furfural over copper-containing catalysts”, J. Catal. 67 (1953a) p. 424.
Shen, J., Hu, Z., Zhang, H., Li, Z. and Chen, Y., “The preparation of Ni-P ultrafine amorphous alloy particles by chemical reduction”, Appl. Phys. Lett. 59 (1991) 3545-3546.
Shen, J., Hu, Z., Zhang, Q., Zhang, L. and Chen, Y., “Investigation of Ni-P-B ultrafine amorphous alloy particles produced by chemical reduction”, J. Appl. Phys. 71 (1992) 5217-5221.
Shen, J. H. and Chen, Y. W., “Catalytic properties of bimetallic NiCoB nanoalloy catalysts for hydrogenation of p-chloronitrobenzene”, J. Mol. Catal. A: Chem. 273 (2007) 265-276.
Tijani, A., Coq, B. and Figueras, F., “Hydrogenation of para-chloronitrobenzene over supported ruthenium-based catalysts”, Appl. Catal. 76 (1991) 255-266.
Tijani, A., Coq, B. and Figuéras, F., “Pt/γ-Al2O3 catalytic membranes vs. Pt on γ-Al2O3 powders in the selective hydrogenation of p-chloronitrobenzene”, J. Mol. Catal. 68 (1991) 331-345.
Wang, M. G. Li, H. X. Wu, Y. D. and Zhang J., “Comparative studies on the catalytic behaviors between the Ni-B amorphous alloy and other Ni-based catalysts during liquid phase hydrogenation of acetonitrile to ethylamine”, Mat. Letters 57 (2003) 2954-2964.
Yamashita, H., Yoshikawa, H., Funabiki, T. and Yoshida, S., “Catalysis by amorphous metal alloy”, J. Chem. Soc. Faraday Trans.I. 82 (1986) 1771-1780.
Yan, X., Liu, M., Liu, H. and Liew, K. Y., “Role of boron species in the hydrogenation of o-chloronitrobenzene over polymer-stabilized ruthenium colloidal catalysts”, J. Mol. Catal. A: Chem. 169 (2001) 225-233.
Yan, X. H., Sun, J. Q., Wang, Y. W. and Yang, J. F., “A Fe-promoted Ni-P amorphous alloy catalyst (Ni-Fe-P) for liquid phase hydrogenation of m- and p-chloronitrobenzene”, J. Mol. Catal. A: Chem 252 (2006) 17-22.
Yan, X. H., Sun, J. Q., Xu, Y. H. and Yang, J. F., “Liquid-phase hydrogenation of chloronitrobenzene to chloroaniline over Ni-Co-B Amorphous Catalyst”, Chin. J. Catal. 27 (2006) 119-123.
Yu, Z. B., Qiao M. H., Li, H. X., Deng, J. F., “Preparation of amorphous Ni-Co-B alloys and the effect of cobalt on their hydrogenation activity”, Appl. Catal., A 163 (1997) 1-13.
Yu, Z. K., Liao, S. J., Xu, Y., Yang, B. and Yu, D. R., “ Hydrogenation of nitroaromatics by polymer-anchored bimetallic palladium-ruthenium and palladium-platinum catalysts under mild conditions“, J. Mol. Catal. A: Chem. 120 (1997) 247-255.
指導教授 陳郁文(Yu-wen Chen) 審核日期 2009-6-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明