博碩士論文 963209010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:13.59.16.6
姓名 謝孟偉(Meng-Wei Hsieh)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 二氧化鈦奈米管之研究
(The property of titania nanotube)
相關論文
★ 發光二極體電極設計與電流分佈模擬分析★ 外加水平式磁場柴氏長晶法生長矽單晶之熱流場數值模擬研究
★ 外加cusp磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ MOCVD垂直式腔體中氮化鎵薄膜生長之模擬分析
★ 考量氣體分子 吸附性質之 MOCVD垂直反應腔體模擬分析★ Phosphor Packaging Design of white LED with Optical-Thermal-Electrical Coupling
★ 水平式MOCVD腔體中使用氣體脈衝方法生長氮化鋁薄膜之數值模擬與分析★ 外加Cusp磁場下柴氏法生長單晶矽之不同晶堝轉影響熱流場及氧傳輸數值分析
★ 水解二乙基鋅於近耦合噴淋式反對稱腔體 之MOCVD模擬設計分析★ MOCVD水平式腔體中氮化鎵薄膜製程碳濃度之模擬與傳輸現象分析
★ MOCVD 行星式腔體之模型建立與傳輸現象分析★ 柴氏法生長6~8吋矽單晶之高溫梯爐體與製程設計模擬
★ 300mm矽晶圓片於平坦度10奈米以下磊晶製程之數值模擬分析★ 鋰鋁矽酸鹽之負熱膨脹陶瓷製程
★ 鋰鋁矽酸鹽摻鈦陶瓷之性質研究★ 高功率LED之熱場模擬與結構分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究以射頻磁控濺鍍系統,於FTO導電玻璃上濺鍍1μm鈦薄膜。探討不同氟化銨、水含量及電壓等陽極處理參數,對鈦薄膜轉換成二氧化鈦奈米管陣列型態和性能的影響。並以製備出透明之二氧化鈦奈米管陣列,應用於太陽能光電化學產氫。氟化銨含量的高低會影響二氧化鈦奈米管的長度:當氟化銨含量越高,二氧化鈦奈米管越短。水含量會影響表面二氧化鈦的覆蓋量:水含量越高,二氧化鈦覆蓋程度越低,但卻造成鈦薄膜的殘留。陽極處理電壓會影響剩餘鈦氧化層厚度:電壓越高,鈦氧化層厚度越低,使鈦薄膜轉換成二氧化鈦奈米管之轉換率上升。二氧化鈦奈米管管長和表面二氧化鈦覆蓋,影響了二氧化鈦奈米管的性能:二氧化鈦奈米管長度增加,光穿透度降低,而光電流上升,但光電流會因為奈米管表面覆蓋二氧化鈦,使的電子非垂直方向傳輸到FTO,增加電子移動路徑,造成光電流無法有效提升。
摘要(英) In this study, we prepared transparent TiO2 nanotubes array for application in photo-electrochemical hydrogen generation. Hence we used RF (Radio frequency) magnetic sputter system to deposit 1μm Ti thin film on FTO (Fluorine-doped tin oxide) glass substrates at 300°C, and then anodized in difference NH4F, water content electrolyte, and applied potential to discuss the variation of morphological surface affect to the performance of TiO2 nanotubes. The results indicate that the length of TiO2 nanotubes decreases when the NH4F content increases. When the water content is higher, the TiO2 cover removed is larger but the Ti thin film is remained. The applied potential increases, the thickness of oxide layer decreases and the length of TiO2 nanotubes increases. Higher length of TiO2 nanotubes leads to the optical transmission decreases but the photocurrent increases. The TiO2 cover also affects on the photocurrent in which the electron does not vertical transport to FTO so that the distance of electron transportation might be rise. Therefore, the photocurrent could not enhance available.
關鍵字(中) ★ 二氧化鈦奈米管
★ 陽極處理
關鍵字(英) ★ Titania nanotube
★ Anodization
論文目次 中文摘要..................................................................................................................i
英文摘要.............................................................................................................ii
誌謝…………………………………………………………..…..................…iii
目錄…………………………………………………………..…..................…iv
圖目錄................................................................................................................vi
表目錄.................................................................................................................x
第一章 緒論.......................................................................................................1
第二章 實驗方法與內容.................................................................................14
2.1 實驗方法....................................................................................................14
2.2 實驗流程....................................................................................................14
2.2.1 基板準備與清洗.............................................................................14
2.2.2 磁控濺鍍純鈦金屬層.....................................................................14
2.2.3 陽極處理製備二氧化鈦奈米管陣列.............................................16
2.2.4 退火處理.........................................................................................16
2.2.5 光電極之封裝及光電流檢測.........................................................17
2.3 實驗檢測....................................................................................................17
2.3.1 晶相結構.........................................................................................17
2.3.2 二氧化鈦奈米管陣列之微觀結構.................................................17
2.3.3二氧化鈦奈米管陣列之紫外光-可見光穿透率量測.....................17
2.3.4 二氧化鈦奈米管陣列之光電流量測.............................................18
第三章 結果與討論.........................................................................................23
3.1結構分析及鈦薄膜表面型態......................................................................23
3.2鈦薄膜轉換成二氧化鈦奈米管之成長機制..............................................23
3.3陽極處理參數對二氧化鈦奈米管陣列之影響..........................................25
3.3.1 不同氟化銨含量之影響.................................................................25
3.3.2 不同水含量之影響.........................................................................26
3.3.3 不同電壓之影響............................................................................ 27
3.4紫外光–可見光光譜量測............................................................................28
3.4.1 不同氟化銨含量所做二氧化鈦奈米管對穿透光譜之影響.........28
3.4.2 不同水含量所做二氧化鈦奈米管對穿透光譜之影響.................28
3.4.3 不同電壓所做二氧化鈦奈米管對穿透光譜之影響.....................29
3.5 光電流量測................................................................................................29
3.5.1 不同氟化銨含量所做二氧化鈦奈米管對光電流之影響.............29
3.5.2 不同水含量所做二氧化鈦奈米管對光電流之影響.....................30
3.5.3 不同電壓所做二氧化鈦奈米管對光電流之影響.........................30
第四章 結論.....................................................................................................65
參考文獻...........................................................................................................66
參考文獻 1. K.S. Raja, V.K. Mahajan, M Misra, “Determination of photo conversion efficiency of nanotubular titanium”, Journal of Power Sources 159 (2006)1258-1265.
2. A. Fujishma, A. Honda, “Electrochemical photolysis of water at a semiconductor electrode”, Nature 238 (1972) 37-38.
3. J. Halme, J. Saarinen, P. Lund, “Spray deposition and compression of TiO2 nanoparticle films for dye-sensitized solar cells on plastic substrates”, Solar Energy Materials and Solar Cells 90 (2006) 887-899.
4. Y.F. Gao, M. Nagai, W.S. Seo, K. Koumoto, “Template-free self-assembly of a nanoporous TiO2 thin film”, Journal of The American Ceramic Society 90 (2007) 831-837.
5. K. Fujihara, A. Kumar, R. Jose, S. Ramakrishna, Uchida S, “Spray deposition of electrospun TiO2 nanorods for dye-sensitized solar cell”, Nanotechnology 18 (2007) 365709.
6. M. Kitano, R. Mitsui, D.R. Eddy, “Synthesis of nanowire TiO2 thin films by hydrothermal treatment and their photoelectrochemical properties”, Catalysis Letters 119 (2007) 217-221.
7. R. Beranek, H. Tsuchiya, T. Sugishima, J.M. Macak, L. Taveria, S. Fujimoto, H. Kisch, P. Schumki, “Enhancement and limits of the photoelectrochemical response from anodic TiO2 nanotubes”, Applied Physics Letters 87 (2005) 243114.
8. V Zwilling, M Aucouturier, E Darque-Ceretti, “Anodic oxidation of titanium and TA6V alloy in chromic media: An electrochemical approach”, Electrochimica Acta, 45 (1999) 921-929.
9. D Gong, C.A.Grimes, O.K. Varghese, W. Hu, R.S. Singh,Z. Chen,E.C. Dickey, “Titanium oxide nanotube rrays prepared by anodic oxidation”, Materials Research Society, 16 (2001) 3331-3334.
10. K. Yasuda, J.M. Macak, S. Berger, A. Ghicov, P. Schmuki, “ Mechanistic aspects of the self-organization process for oxide nanotube formation on Valve metals”, Journal of The Electrochemical Society, 145 (2007) C472-C478.
11. J.M. Macak, H. Tsuchiya, A. Ghicov, K.Yasuda, R. Hahn, S. Bauer, P. Schmuki, “TiO2 nanotubes: self-organized electrochemical formation,properties and applications”, Current Opinion in Solid State & Materials Science, 11 (2007) 3-18.
12. K.S. Raja, T. Gandhi, M. Misra, “Effect of water content of ethylene glycol as electrolyte for synthesis of ordered titania nanotubes”, Electrochemistry Communication 9 (2007) 1069-1076.
13. S.K. Mohapatra, M. Misra, V.K. Mahajan, K.S. Raja, “A novel method for the synthesis of titania nanotubes sing sonoelectrochemical method and its application for photoelectrochemical splitting of water”, Journal of Catalysis 246 (2007) 362-369.
14. G. K. Mor, O.K. Varghese, M. Paulose, C.A. Grimes, “Transparent highly ordered TiO2 nanotube Arrays via anodization of titanium thin films”, Advanced Functional Materials 15 (2005) 1291-1296.
15. G. K. Mor, K. Shankar, M. Paulose, O.K. Varghese,C.A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells”, Nano Letters 6 (2006) 215-218.
16. G. K. Mor, H.E. Prakasam, O.K. Varghese, K. Shankar, C.A. Grimes, “Vertically oriented Ti-Fe-O nanotube array films: Toward a useful material architecture for solar spectrum water photoelectrolysis”, Nano Letters 7 (2007) 2356-2364.
17. G.K. Mor, O.K. Varghese, R.H.T. Wilke, S. Sharma, K. Shankar, T.J. Latempa, K.S. Choi, C.A. Grimes, “p-Type Cu-Ti-O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation ”, Nano Letters 8 (2008) 1906-1911.
18. A. Ghicov, J.M. Macak, H. Tsuchiya, J. Kunze, V. Haeublein, S. Kleber, P. Schmuki, “TiO2 nanotube layers: Dose effects during nitrogen doping by ion implantation”, Chemical Physics Letters 428 (2006) 421-425.
19. S. Berger, J.M. Macak, J. Kunze, P. Schmuki, “High-efficiency conversion of sputtered Ti thin films into TiO2 nanotubular layers”, Electrochemical and Solid-State Letters 11 (2008) C37-C40.
20. X. Yu, Y. Li, W. Ge, Q. Yang, N. Zhu, K. Kalantar-zadeh, “Formation of nanoporous titanium oxide films on silicon substrates using an anodization process”, Nanotechnology 17 (2006) 808-814.
21. B.Y. Yu, A. Tsai, S.P. Tsai, K.T. Wong,Y. Yang, C.W. Chu, J.J. Shyue, “Efficient inverted solar cells using TiO2 nanotube arrays”, Nanotechnology 19 (2008) 255202.
22. D.J. Yang, H.G. Kim, S.J. Cho, W.Y. Choi, “Thickness-conversion ratio from titanium to TiO2 nanotube fabricated by anodization method”, Materials Letters 62 (2008) 775-779.
23. J. Wang, Z. Lin, “Anodic formation of ordered TiO2 nanotube arrays: Effects of electrolyte temperature and anodization potential”, Journal of Physical Chemistry C 113 (2009) 4026-4030.
24. A.Z. Sadek, H. Zheng, K. Latham, W. Wlodarski, K. Kalantar-zadeh, “Anodization of Ti thin film deposited on ITO”, Langmuir 25 (2009) 509-514.
25. 陳震閎,“透明導電玻璃生長二氧化鈦奈米管陣列應用於敏化太陽能電池”,逢甲大學材料所碩士論文 (2008)。
26. 行政院國家科學委員會,“真空技術與應用”,精密儀器發展中心(2001)。
27. J.H. Park, S. Kim, A.J. Bard, “Novel carbon-doped Tio2 nanotube arrays with high aspect ratios for efficient solar water splitting”, Nano Letters 6 (2006) 24-28.
指導教授 陳志臣(Jyh-Chen Chen) 審核日期 2009-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明