博碩士論文 963402013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.145.138.21
姓名 陳正儒(Cheng-Ru Chen)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 以衛星影像物候資訊進行稻作分區之研究
(Satellite-Based Information for Rice Crop Monitoring)
相關論文
★ 多時期衛星影像之自動化監督性分類★ 大範圍地區土地使用分類之研究
★ 高解析力衛星影像控制點座標之自動化萃取★ 影像最佳類別數目之研究
★ 遙控直昇機應用於工程管理監測可行性之研究★ 以地理資訊系統輔助共同管道之最適設計
★ 有理函數應用於空載多光譜影像幾何校正之研究★ SPOT自然色影像產生之研究
★ 結合影像區塊及知識庫分類之研究-以IKONOS衛星影像為例★ 遙控飛機空載視訊影像自動化鑲嵌方法之研究
★ 影像分割技術於高解析衛星影像分類之應用★ 小波多層次解析之影像融合應用
★ 線性複合模式應用於變遷偵測之研究★ 改良式變異向量分析法於變遷偵測之探討
★ 區塊分割變遷偵測法於多時期衛星影像之應用★ 資料挖掘技術應用於外來入侵植物研究 (以恆春地區銀合歡為例)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 稻米是全世界最重要的經濟與糧食作物之一。在許多以稻作經濟為主的國家,稻米的生產與供需支持了農村勞力雇用與家戶收入的主要經濟來源。由制定農業經濟計劃與確保穩定供應的糧食安全層面來看,稻米產區每年稻作型態與其空間分布的估測資訊可說是至關重要的決策資料。因此,本研究的主要目的是利用多時序衛星影像資訊進行從地區到區域尺度稻米耕作系統之分區研究。研究內容以三個不同的稻米生長區域的狀況為案例展開。第一個案例的主要目標是,利用衛星影像推導之物候資訊發展以作物物候資訊為基礎的作物耕作型態分類方法,研究使用MODIS時序影像進行湄公河越南三角洲上游稻區的分類;第二個案例,為因應小面積稻作坵塊的監測需求,產生MODIS與SPOT的多時序融合影像,並用以驗證物候資訊分類演算法進行稻作系統之分區製圖適宜性;第三個案例,則是因應大區域尺度範圍下複雜多樣的稻作系統判定,發展利用MODIS推導的作物物候時序資料,並以類神經網路進行分類,產製下湄公河國家,包含越南、泰國、寮國與柬埔寨等國家的稻作系統分區地圖。
研究流程有四個主要的資料處理步驟:(1)影像資料前置處理:包括了衛星影像的幾何與輻射校正;並且使用時空適應反射率融合模式(STARFM)進行台灣地區的MODIS與SPOT影像的影像融合,產生高時空解析的合成影像;(2) 植生指數的時序合成影像依研究區域空間尺度範圍與應用的分類方法,各別以經驗模態分解法與小波轉換法濾除時序雜訊;(3)依區域詳細作物曆資訊的獲取性,分別以作物物候資訊為基礎的分類算法與類神經網路分類法進行稻作耕種系統的分類;(4)利用地面參考資料與政府統計數據進行分類精度評估並繪製稻作系統分區圖與產生量化資訊。
研究發現經驗模態分解與小波轉換皆可有效濾除植生指數時序資料上的雜訊。比較地面調查參考資料與研究分類的結果,驗證了本研究利用衛星時序資料應用不同資料前處理、資料濾噪與分類策略在不同空間尺度(從地區尺度到區域尺度)與作物曆的可得性進行稻作系統自動判釋的有效性。第一個研究案例在越南三角洲上游大塊且均質稻區,MODIS時序影像推導的物候資訊配合當地作物曆,直接使用物候資訊分類算法進行分類,總體分類精度可以達到93.8%,Kappa係數為0.90;由分類地圖推導的稻米種植面積與縣區尺度的政府稻米調查統計比較結果,顯示相當顯著的一致性(R2 = 0.91),驗證了物候資訊分類法進行該研究區內稻作系統自動化判定分類的有效性。案例二則因應台灣小坵塊稻作區問題,先使用MODIS與SPOT融合出高空空與時間解析的合成影像,再以物候資訊分類算法進行分類,分類結果顯示與政府調查資料亦有很高的一致性,由分類圖推估的各期稻作耕種面積與政府稻作面積統計資料比較:第一期與第二期的R2 分別為 0.98與0.90,RMSE各為115.7 公頃與284.39公頃;第一期稻作的總體分類精度為89.6%,Kappa係數為0.79,第二期的總體分類精度為83.2%,Kappa係數為0.66。第三個研究屬於區域尺度的範圍;由於東南亞中南半島大範圍尺度下有著複雜多樣化的稻米種植型態,因此本研究使用衛星影像的物候資訊配合類神經網路進行稻米型態分布分類。分類結果的總體分類精度與Kappa係數分別為84.9%與0.8,並比較分類影像推導的稻作面積與省級尺度的地面調查/政府稻米統計資訊,其各國R2 皆高於0.91以上,顯示了以衛星物候資訊應用類神經網路進行稻區分類的有效性。
儘管某些誤差影響,如資料處理、混合像元問題、分類結果與參考地真資料(產生自高解析衛星資料與航照)的解析度差異等因素而產生部分分類精確度降低的情況;然本研究的分類成果與建議方法,能有效提供研究區內稻作型態分布與監測的量化數據,這些資訊有助於農業計畫規劃者制定稻作生產的管理策略,以強化國家層級的糧食安全與擬定稻米進出口政策;同時,本研究所提出的方法除驗證研究區的可應用性,亦可推廣至世界其他稻作區進行稻作生產活動的監測。
摘要(英) Rice is globally one of the most important economic and food crops. It is the main source of employment and income for rural people in many countries worldwide. Yearly estimation of rice growing areas and delineation of spatial distribution of rice crops are needed to devise agricultural economic plans and to ensure security of food supply. The main objective of this study is to develop approaches for mapping rice-cropping systems at sub-national and regional scales by using multi-temporal satellite data. Three case studies were carried out under different rice growing conditions. The objective of the first case study was to develop a phenology-based approach for rice crop mapping in the upper Mekong River Delta (MRD) region in South Vietnam using Moderate Resolution Imaging Spectroradiometer (MODIS). The second case study was to use time-series MODIS−SPOT fusion data for rice crop mapping using the phenology-based method. In the third case study, an approach was developed to map complex rice cropping systems in Low Mekong Countries (LMC), including Vietnam, Lao, Thailand and Cambodia, from the time-series MODIS data using artificial neural networks (ANN).
The data processing was basically carried out through four main steps: (1) data preprocessing to account for geometric and radiometric errors, and to use MODIS data with Satellite Pour l′Observation de la Terre (SPOT) data using the spatial-temporal adaptive reflectance fusion model (STARFM) for the case study in Taiwan; (2) construction of the smooth time-series vegetation indices (VIs) using the empirical mode decomposition (EMD) and wavelet transform (WT),respectively regarding to the scale of study area and the application of the classifier; (3) rice crop classification using phenology-based algorithm and ANN due to availability of detail crop calendar, and (4) accuracy assessment of the mapping results using ground reference data and rice area statistics provided by the government.
The research findings confirmed that EMD and WT algorithms were efficient at filtering out noise from the time-series VI MODIS data. The mapping results compared with the ground reference data indicated the validity of adapting strategy, including data preprocessing, noise filtering and classification methods, regarding to the availability of detailed regional crop calendar for rice crop mapping at the subnational and regional scales. The results achieved for the first case study in upper MRD, in which has larger and homogeneous rice fields, using the phenology-based approach revealed the overall accuracy and Kappa coefficient value of 93.8% and 0.90, respectively. A close agreement between the MODIS-based rice areas and the district-level rice area statistics was observed (R2 = 0.91), reaffirming the effectiveness of this approach for automatically delineating rice-cropping systems in the study region.
The phenology-based approach was applied to the time-series MODIS−SPOT fusion data to delineate small-scale rice fields in Taiwan. The results indicated a close correlation between the mapping results and the government rice statistics (the R2 and RMSE for the first and second crops, were 0.98 and 115.7 ha. and 0.90 and 284.39 ha. respectively). The overall accuracies and Kappa coefficients achieved for the first and second crops were 89.6% and 0.79, and 83.2% and 0.66, respectively. The ANN applied to the filtered MODIS VI data to map complex rice cropping systems in LMC showed the overall accuracy and Kappa coefficient of 84.9% and 0.8, respectively. The comparison results between MODIS-derived rice area and rice area statistics at the provincial level also reaffirmed by the validity of ANN algorithm (R2 = 0.91).
The accuracy level of the mapping results was lowered by some error sources including data preprocessing, mixed-pixel problems and resolution bias between the mapping results and the ground reference data constructed using high-resolution satellite data or aerial photos. The results, however, achieved from this study could provide quantitative information on rice cropping systems that may be useful for agronomic planners to devise strategies for rice crop management to enhance national food security and rice grain exports. Such approaches were thus proposed for monitoring rice cropping activities in the study regions and other places worldwide.
關鍵字(中) ★ 遙測
★ 稻米
★ 作物監測
★ 物候資訊
★ 影像融合
關鍵字(英) ★ Remote sensing
★ Rice
★ Crop monitoring
★ Phenology
★ Image fusion
論文目次 中文摘要 i
ABSTRACT iv
ACKNOWLEDGMENT vii
TABLE OF CONTENTS viii
LIST OF FIGURES xii
LIST OF TABLES xvi
LIST OF ABBREVIATIONS xvii
CHAPTER 1. INTRODUCTION 1
1.1 General Background 1
1.2 Statement of Research Problems 6
1.3 Research Objectives 7
1.4 Dissertation Structure 7
Chapter 2. LITERATURE REVIEW 9
2.1 Time-series Satellite Data for Agriculture Monitoring 9
2.2 Data Fusion Techniques 10
2.3 Noise Filtering Techniques 15
2.3.1 Fourier Transform 15
2.3.2 Savitzky-Golay Filter 16
2.3.3 Wavelet Transform 17
2.3.4 Empirical Mode Decomposition 19
2.3.5 Comparisons between Noise Filtering Methods 20
2.4 Classification Algorithms on Remote Sensing for Crop Monitoring 22
CHAPTER 3. STUDY AREA AND DATA COLLECTION 29
3.1 Study Region in Mekong River Delta 29
3.2 Study Region in Taiwan 32
3.3 Study Region in Southeast Asia 34
3.3. Data Collection 38
3.3.1 Moderate Resolution Imaging Spectroradiometer (MODIS) Data 38
3.3.2 Satellite Pour l’Observation de la Terre (SPOT) Data 40
3.3.3 Ground Reference and Ancillary Data 42
CHAPTER 4. METHODOLOGY 46
4.1 Conceptual Framework 46
4.2 Rice Crop Mapping in the Upper Mekong River Delta 48
4.2.1 Data Pre-Processing 48
4.2.2 Non-Rice Area Masking 50
4.2.3 Phenology-Based Rice Crop Classification 52
4.2.4 Accuracy Assessment 55
4.3 Rice Crop Mapping in Taiwan 56
4.3.1 Data Pre-processing 56
4.3.2 MODIS-SPOT Fusion data 57
4.3.3 Constructing Smooth Time-Series STARFM NDVI Data 59
4.3.4 Rice Crop Mapping Using Phenology-Based Algorithm 60
4.3.5 Accuracy Assessment 62
4.4 Rice Crop Mapping in Southeast Asia Region 63
4.4.1 Data Pre-Processing 64
4.4.2 ANN-Based Image Classification 67
4.4.3 Accuracy Assessment 71
CHAPTER 5: RESULTS AND DISCUSSION 72
5.1 Results of Rice Crop Mapping in the Upper Mekong Delta 72
5.1.1 EMD of NDVI Time-Series Data 72
5.1.2 Comparison between the Estimated Dates and Field Survey Data 75
5.1.3 Classification Accuracy Assessment 76
5.1.4 Comparison of Classified Results with Rice Statistics 78
5.1.5 Summary 79
5.2 Results of Rice Crop Mapping in Taiwan 80
5.2.1 Validation of STARFM Results 80
5.2.2 Comparison between the Estimated Dates and Field Survey Data 83
5.2.3 Accuracy of Mapping Results 86
5.2.3 Summary 91
5.3 Results of Rice Crop Mapping in Southeast Asia 92
5.3.1 Temporal characteristics of rice crop NDVI profiles 92
5.3.2 Spatial Distributions of Rice Cropping Systems in Southeast Asia Region 95
5.3.3 Comparisons between Classification Map and the Ground Reference Data 96
5.3.4 Comparisons between Classification Results and Rice Area Statistics 98
5.3.5 Summary 101
CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 103
6.1 Conclusions 103
6.3 Recommendations 104
REFERENCES 107
參考文獻 [1] ADB, The economics of climate change in Southeast Asia: A regional review. Asian Development Bank, Manila, Philippines. 2009.
[2] Anderson, M.C., Kustas, W.P., Norman, J.M., Hain, C.R., Mecikalski, J.R., Schultz, L., González-Dugo, M.P., Cammalleri, C., d′Urso, G., Pimstein, A., Gao, F., "Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery". Hydrol. Earth Syst. Sci. 15, 223-239. 2011.
[3] Atkinson, P.M., Curran, P.J., "Defining an optimal size of support for remote sensing investigations". Geoscience and Remote Sensing, IEEE Transactions on 33, 768-776. 1995.
[4] Atzberger, C., Formaggio, A.R., Shimabukuro, Y.E., Udelhoven, T., Mattiuzzi, M., Sanchez, G.A., Arai, E., "Obtaining crop-specific time profiles of NDVI: the use of unmixing approaches for serving the continuity between SPOT-VGT and PROBA-V time series". International Journal of Remote Sensing 35, 2615-2638. 2014.
[5] Becker-Reshef, I., Justice, C., Sullivan, M., Vermote, E., Tucker, C., Anyamba, A., Small, J., Pak, E., Masuoka, E., Schmaltz, J., "Monitoring global croplands with coarse resolution earth observations: The Global Agriculture Monitoring (GLAM) project". Remote Sensing 2, 1589-1609. 2010.
[6] Benediktsson, J.A., Swain, P.H., Ersoy, O.K., "Neural network approaches versus statistical methods in classification of multisource remote sensing data", Geoscience and Remote Sensing Symposium, 1989. IGARSS′89. 12th Canadian Symposium on Remote Sensing., 1989 International, pp. 489-492. 1989
[7] Boggs, C.S., "Assessment of SPOT 5 and QuickBird remotely sensed imagery for mapping tree cover in savannas". International Journal of Applied Earth Observation and Geoinformation 12, 217–224. 2010.
[8] Bolstad, P., Lillesand, T.M., "Rapid maximum likelihood classification". Photogrammetric Engineering and Remote Sensing 57, 67-74. 1991.
[9] Boschetti, L., Flasse, S.P., Brivio, P.A., "Analysis of the conflict between omission and commission in low spatial resolution dichotomic thematic products: The Pareto Boundary". Remote Sensing of Environment 91, 280-292. 2004.
[10] Boschetti, M., Stroppiana, D., Brivio, P.A., Bocchi, S., "Multi-year monitoring of rice crop phenology through time series analysis of MODIS images". International Journal of Remote Sensing 30, 4643-4662. 2009.
[11] Boser, B.E., Guyon, I., Vapnik, V., "A training algorithm for optimal margin classiers", The Fifth Annual Workshop on Computational Learning Theory. ACM Press. 1992
[12] Canisius, F., Turral, H., Molden, D., "Fourier analysis of historical NOAA time series data to estimate bimodal agriculture". International Journal of Remote Sensing 28, 5503 – 5522 2007.
[13] Chang, N.-B., Vannah, B.W., Yang, Y.J., Elovitz, M., "Integrated data fusion and mining techniques for monitoring total organic carbon concentrations in a lake". International Journal of Remote Sensing 35, 1064-1093. 2014.
[14] Chen, C.F., Chen, C.R., Son, N.T., "Investigating rice cropping practices and growing areas from MODIS Data using empirical mode decomposition and support vector machines". GIScience & Remote Sensing 49, 117-138. 2012a.
[15] Chen, C.F., Son, N.T., Chang, L.Y., Chen, C.R., "Classification of rice cropping systems by empirical mode decomposition and linear mixture model for time-series MODIS 250 m NDVI data in the Mekong Delta, Vietnam". International Journal of Remote Sensing 32, 5115-5134. 2011a.
[16] Chen, C.F., Huang, S.W., Son, N.T., Chang, L.Y., "Mapping double-cropped irrigated rice fields in Taiwan using time-series Satellite Pour I′Observation de la Terre data". Journal of Applied Remote Sensing 5, 053528-053528-053518. 2011b.
[17] Chen, C.F., Son, N.T., Chen, C.R., Chang, L.Y., "Wavelet filtering of time-series moderate resolution imaging spectroradiometer data for rice crop mapping using support vector machines and maximum likelihood classifier". Journal of Applied Remote Sensing 5, 053525-053525-053515. 2011c.
[18] Chen, C.R., Chen, C.F., Son, N.T., "Detecting rice crop phenology from time-series MODIS data", The 33rd Asian Conference On Remote Sensing,, Pattaya,Thailand., 2012b
[19] Chen, J., Jönsson, P., Tamura, M., Gu, Z., Matsushita, B., Eklundh, L., "A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter". Remote Sensing of Environment 91, 332-344. 2004.
[20] Christopher, J.K., Shawn, P.S., "Impacts of recent climate change on Wisconsin corn and soybean yield trends". Environmental Research Letters 3, 034003. 2008.
[21] Couloigner, I., Ranchin, T., Valtonen, V., Wald, L., "Benefit of the future SPOT-5 and of data fusion to urban roads mapping". International journal of remote sensing 19, 1519-1532. 1998.
[22] Davranche, A., Lefebvre, G., Poulin, B., "Wetland monitoring using classification trees and SPOT-5 seasonal time series". Remote Sensing of Environment 114, 552-562. 2010.
[23] El Hajj, M., Bégué, A., Guillaume, S., Martiné, J.-F., "Integrating SPOT-5 time series, crop growth modeling and expert knowledge for monitoring agricultural practices — The case of sugarcane harvest on Reunion Island". Remote Sensing of Environment 113, 2052-2061. 2009.
[24] Fangping, D., Gaoli, S., Chuang, L., "Seasonal variation of MODIS vegetation indexes and their statistical relationship with climate over the subtropic evergreen forest in Zhejiang, China". Geoscience and Remote Sensing Letters, IEEE 4, 236-240. 2007.
[25] Feng, G., Masek, J., Schwaller, M., Hall, F., "On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance". Geoscience and Remote Sensing, IEEE Transactions on 44, 2207-2218. 2006.
[26] Flitti, F., Bennamoun, M., Huynh, D., Bermak, A., Collet, C., "Probabilistic Satellite Image Fusion", Computer Analysis of Images and Patterns. Springer, pp. 410-418. 2009
[27] Foody, G.M., McCULLOCH, M.B., Yates, W.B., "Classification of remotely sensed data by an artificial neural network: issues related to training data characteristics". Photogrammetric Engineering and Remote Sensing 61, 391-401. 1995.
[28] Galford, G.L., Mustard, J.F., Melillo, J., Gendrin, A., Cerri, C.C., Cerri, C.E.P., "Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil". Remote Sensing of Environment 112, 576-587. 2008.
[29] Gao, F., Masek, J., Schwaller, M., Hall, F., "On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance". Geoscience and Remote Sensing, IEEE Transactions on 44, 2207-2218. 2006.
[30] Geerken, R., Zaitchik, B., Evans, J.P., "Classifying rangeland vegetation type and coverage from NDVI time series using Fourier Filtered Cycle Similarity". International Journal of Remote Sensing 26, 5535-5554. 2005.
[31] German, G.W.H., Gahegan, M.N., "Neural network architectures for the classification of temporal image sequences". Comput. Geosci. 22, 969-979. 1996.
[32] GSO, "Statistical yearbook of Vietnam", Hanoi, Vietnam. 2007
[33] Ha, W., Gowda, P.H., Howell, T.A., "A review of potential image fusion methods for remote sensing-based irrigation management: part II". Irrigation Science 31, 851-869. 2013.
[34] Hilker, T., Wulder, M.A., Coops, N.C., Linke, J., McDermid, G., Masek, J.G., Gao, F., White, J.C., "A new data fusion model for high spatial-and temporal-resolution mapping of forest disturbance based on Landsat and MODIS". Remote Sensing of Environment 113, 1613-1627. 2009.
[35] Hoshino, S., Kosaka, N., Uto, K., Minekawa, Y., Kosugi, Y., Saito, G., Oda, K., "Analysis of salt-damaged paddy field using SPOT5 satellite images in Yamagata Prefecture", INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, p. 1830. 2005
[36] Huang, M.-Y., Huang, C.J., Fu, T.-T., "Cultivation arrangements and the cost efficiency of rice farming in Taiwan". Journal of Productivity Analysis 18, 223-239. 2002.
[37] Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung, C.C., Liu, H.H., "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis". Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 454, 903-995. 1998.
[38] IRRI, Bringing Hope, Improving Lives: Strategic Plan, 2007-2015. International Rice Research Institute. 2006.
[39] Jain, A.K., Mao, J., Mohiuddin, K.M., "Artificial neural networks: A tutorial". IEEE computer 29, 31-44. 1996.
[40] Justice, C.O., Vermote, E., Townshend, J.R.G., DeFries, R., Roy, D.P., Hall, D.K., Salomonson, V.V., Privette, J.L., Riggs, G., Strahler, A., Lucht, W., Myneni, R.B., Knyazikhin, Y., Running, S.W., Nemani, R.R., Zhengming, W., Huete, A.R., Van Leeuwen, W., Wolfe, R.E., Giglio, L., Muller, J.P., Lewis, P., Barnsley, M.J., "The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research". Geoscience and Remote Sensing, IEEE Transactions on 36, 1228-1249. 1998.
[41] Karkee, M., Steward, B.L., Tang, L., Aziz, S.A., "Quantifying sub-pixel signature of paddy rice field using an artificial neural network". Computers and Electronics in Agriculture 65, 65-76. 2009.
[42] Kim, H.-Y., Ko, J., Kang, S., Tenhunen, J., "Impacts of climate change on paddy rice yield in a temperate climate". Global Change Biology 19, 548-562. 2013.
[43] Le-Toan, T., Feurer, D., Florsch, G., "RISAR validation report – Rice mapping in the Mekong delta, ESA contract No 13201/98/NL/SB CCN 002", CESBIO. 2003
[44] Lek, S., Delacoste, M., Baran, P., Dimopoulos, I., Lauga, J., Aulagnier, S., "Application of neural networks to modelling nonlinear relationships in ecology". Ecological Modelling 90, 39-52. 1996.
[45] Li, X., "Temporal structure of neuronal population oscillations with empirical mode decomposition". Physics Letters A 356. 2006.
[46] Ling, Y., Ehlers, M., Usery, E., Madden, M., "Effects of spatial resolution ratio in image fusion". International Journal of Remote Sensing 29, 2157-2167. 2008.
[47] Lobell, D.B., Burke, M.B., "On the use of statistical models to predict crop yield responses to climate change". Agricultural and Forest Meteorology 150, 1443-1452. 2010.
[48] Mainuddin, M., Kirby, M., Chen, Y., "Spatial and temporal pattern of land and water productivity in the Lower Mekong River Basin". 2008
[49] Mallat, S.G., "A theory for multiresolution signal decomposition: the wavelet representation". Pattern Analysis and Machine Intelligence, IEEE Transactions on 11, 674-693. 1989.
[50] Martínez, B., Gilabert, M.A., "Vegetation dynamics from NDVI time series analysis using the wavelet transform". Remote Sensing of Environment 113, 1823-1842. 2009.
[51] Masutomi, Y., Takahashi, K., Harasawa, H., Matsuoka, Y., "Impact assessment of climate change on rice production in Asia in comprehensive consideration of process/parameter uncertainty in general circulation models". Agriculture, Ecosystems & Environment 131, 281-291. 2009.
[52] McCulloch, W., Pitts, W., "A logical calculus of the ideas immanent in nervous activity". Bulletin of Mathematical Biology 52, 99-115. 1990.
[53] Meng, J., Du, X., Wu, B., "Generation of high spatial and temporal resolution NDVI and its application in crop biomass estimation". International Journal of Digital Earth 6, 203-218. 2013.
[54] Mingwei, Z., Qingbo, Z., Zhongxin, C., Jia, L., Yong, Z., Chongfa, C., "Crop discrimination in Northern China with double cropping systems using Fourier analysis of time-series MODIS data". International Journal of Applied Earth Observation and Geoinformation 10, 476-485. 2008.
[55] Minh, H.N., Kawaguchi, T., "Overview of rice production system in the Mekong Delta-Vietnam". Journal of the Faculty of Agriculture, Kyushu University, Japan 47, 221– 231. 2002.
[56] MRC, "Multi-functionality of paddy fields over the Lower Mekong Basin", Mekong River Commission, Vientiane , Laos. 2010
[57] Murthy, C.S., Raju, P.V., Badrinath, K.V.S., "Classification of wheat crop with multi-temporal images: performance of maximum likelihood and artificial neural networks". International Journal of Remote Sensing 24, 4871-4890. 2003.
[58] Nguyen, V.L., "Crop diversification in Vietnam. In K. P. Minas, & J. D. Frank (Eds.), Crop diversification in the Asia-Pacific Region. ", Bangkok’ FAO Regional Office for Asia and the Pacific. 2000
[59] Rosengren, M., Willén, E., "MULTIRESOLUTION SPOT-5 DATA FOR BOREAL FOREST MONITORING".
[60] Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., "Monitoring vegetation systems in the Great Plains with ERTS", Proceedings of the Third ERTS Symposium, Washington DC, pp. 309-317. 1973
[61] Rumelhart, D.E., Hinton, G.E., Williams, R.J., Learning internal representations by error propagation, Parallel distributed processing: explorations in the microstructure of cognition, vol. 1. MIT Press, pp. 318-362. 1986.
[62] Sakamoto, T., Wardlow, B.D., Gitelson, A.A., Verma, S.B., Suyker, A.E., Arkebauer, T.J., "A Two-Step Filtering approach for detecting maize and soybean phenology with time-series MODIS data". Remote Sensing of Environment 114, 2146-2159. 2010.
[63] Sakamoto, T., Yokozawa, M., Toritani, H., Shibayama, M., Ishitsuka, N., Ohno, H., "A crop phenology detection method using time-series MODIS data". Remote Sensing of Environment 96, 366-374. 2005.
[64] Savitzky, A., Golay, M.J., "Smoothing and differentiation of data by simplified least squares procedures". Analytical chemistry 36, 1627-1639. 1964.
[65] Schott, J.R., Salvaggio, C., Volchok, W.J., "Radiometric scene normalization using pseudoinvariant features". Remote Sensing of Environment 26, 1-16. 1988.
[66] Soudani, K., Francois, C., Maire, G.l., Dantec, V.L., Dufrene, E., "Comparative analysis of IKONOS, SPOT, and ETM+ data for leaf area index estimation in temperate coniferous and deciduous forest stands". Remote Sensing of Environment 102, 161–175. 2006.
[67] Stibig, H.J., Achard, F., Fritz, S., "A new forest cover map of continental southeast Asia derived from SPOT-VEGETATION satellite imagery". Applied Vegetation Science 7, 153-162. 2004.
[68] Thenkabail, P.S., Schull, M., Turral, H., "Ganges and Indus river basin land use/land cover (LULC) and irrigated area mapping using continuous streams of MODIS data". Remote Sensing of Environment 95, 317-341. 2005.
[69] Tingting, L., Chuang, L., "Study on extraction of crop information using time-series MODIS data in the Chao Phraya Basin of Thailand". Advances in Space Research 45, 775-784. 2010.
[70] Ueda, T., Ogawa, S., Shioda, K., Arulvijitskul, P., Klinkhachorn, P., "Recent irrigation practices in the Upper East Bank of the Chao Phraya Delta". Paddy and Water Environment 3, 63-71. 2005.
[71] UN, "World urbanization prospects: the 2009 revision". United Nations, New York. 2010
[72] Vermote, E.F., Kotchenova, S.Y., Ray, J.P., "MODIS surface reflectance user’s guide", College Park, USA http://modis-sr.ltdri.org/products.html. 2008
[73] Walker, J.J., de Beurs, K.M., Wynne, R.H., Gao, F., "Evaluation of Landsat and MODIS data fusion products for analysis of dryland forest phenology". Remote Sensing of Environment 117, 381-393. 2012.
[74] Wallerman, J., Holmgren, J., "Estimating field-plot data of forest stands using airborne laser scanning and SPOT HRG data". Remote Sensing of Environment 110, 501–508. 2007.
[75] Witold, P., Fuzzy control and fuzzy system. John Wiley & Sons, New York, USA. 1989.
[76] Wolter, P., Townsend, P.A., Sturtevant, B.R., "Estimation of forest structural parameters using 5 and 10 meter SPOT-5 satellite data". Remote Sensing of Environment 113, 2019–2036. 2009.
[77] Xiao, X., Boles, S., Liu, J., Zhuang, D., Frolking, S., Li, C., Salas, W., Moore Iii, B., "Mapping paddy rice agriculture in southern China using multi-temporal MODIS images". Remote Sensing of Environment 95, 480-492. 2005.
[78] Yang, C., Everitt, J.H., Murden, D., "Evaluating high resolution SPOT 5 satellite imagery for crop identification". Computers and Electronics in Agriculture 75, 347-354. 2011.
[79] Yang, J., Zhang, J., Li, H., Sun, Y., Pu, P., "Pixel level fusion methods for remote sensing images: A current review". International Archives of Photogrammetry and Remote Sensing (IAPRS), XXXVIII (7B). 2010.
[80] Yi, C., Pan, Y., Zhang, J., An Integrated Approach to Agricultural Crop Classification Using SPOT5 HRV Images, Computer And Computing Technologies In Agriculture, Volume I. Springer, pp. 677-684. 2008.
[81] Yoshida, S., "Fundamentals of rice crop science". The International Rice Research Institute, Los Banos, Laguna, Philippines. 1981
[82] Zhang, F., Zhu, X., Liu, D., "Blending MODIS and Landsat images for urban flood mapping". International Journal of Remote Sensing 35, 3237-3253. 2014.
[83] Zhang, M., Zhou, Q., Chen, Z., Liu, J., Zhou, Y., Cai, C., "Crop discrimination in Northern China with double cropping systems using Fourier analysis of time-series MODIS data". International Journal of Applied Earth Observation and Geoinformation 10, 476–485. 2008.
[84] Zhang, X., Friedl, M.A., Schaaf, C.B., Strahler, A.H., Hodges, J.C., Gao, F., Reed, B.C., Huete, A., "Monitoring vegetation phenology using MODIS". Remote sensing of environment 84, 471-475. 2003.
[85] Zhu, X., Chen, J., Gao, F., Chen, X., Masek, J.G., "An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions". Remote Sensing of Environment 114, 2610-2623. 2010.
指導教授 陳繼藩(Chi-Farn Chen) 審核日期 2014-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明