以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:30 、訪客IP:18.116.89.8
姓名 張家綸(Chang Chia-Lun) 查詢紙本館藏 畢業系所 化學工程與材料工程學系 論文名稱 氮化鎵發光二極體受應力影響之研究
(Study of stress effect on GaN-based LED)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 由Ⅲ–Ⅴ族GaN直接能隙(direct bandgap)化合物半導體所發展出的GaN-based發光二極體,已成熟且廣泛地被運用在各類型商業化光電產品。發光二極體具備發光效率高、環保、節能的優勢。目前,不論在背光源、照明等應用,LED的使用都有相當顯著的成長,未來的發展空間無可限量。本論文開發晶圓級(wafer-level, thin-GaN)晶片製程及封裝技術,來提升GaN-based發光二極體的發光效率。本研究利用晶圓鍵合及雷射剝離(Laser Lift-Off) 技術將GaN LED磊晶薄膜從sapphire上轉移至高散熱與低電阻值基材上,如Si或Mo基材,在GaN磊晶薄膜轉移至Si基材上的過程中,發現GaN磊晶薄膜內的壓縮應力可以獲得舒解,而降低GaN磊晶薄膜內因壓縮應力所產生的壓電極化效應。當GaN磊晶薄膜內的壓電極化效應降低,可提升GaN LED發光層內的"有效"電子-電洞對數目,而使得因電子-電洞對復合所產生的光子數量增加,進而達成GaN-based LED發光效率提升的目的。在論文研究的過程可以了解,當壓電材料(GaN)受到應力(stress)產生形變(strain),使得壓電材料內部產生一壓電場。當操作GaN-based LED時所注入的電子與電洞於空間上的分佈行為將受到此壓電場大小所影響,進而影響GaN-based LED的光電特性。藉由此論文的研究成果可探討出GaN磊晶薄膜內壓縮應力大小對GaN-based LED的光電特性的影響模式。
摘要(英) This study shows that the optical characteristics of the GaN-based LED is affected by the LED package and vertical thin-GaN LED process. Chapter 2 demonstrates that the wavelength of the planar-GaN based LED with being die-attached on the Si substrate blue-shifts and the internal quantum efficiency of GaN-based LED is enhanced. It is because that the thermal stress from the Si substrate acting on the sapphire substrate relaxes the stress-level of the GaN LED epi-layer after the die-attachment process. Chapter 3 shows the fabrication process of the high-power vertical thin-GaN LED. The GaN LED epi-layer is transferred onto the high thermal conductivity substrate (Si) by the wafer bonding and the laser-lift off (LLO) processes. With the GaN epi-layers transferring process, the compressive stress of the GaN epi-layer suffered the MOCVD growth process can be relaxed. Chapter 4 shows the mechanism of the compressive stress relief in the transferred GaN epi-layer, and the degree of compressive stress relief in the GaN epi-layer can be controlled by the wafer bonding system. The compressive stress in the GaN epi-layer results in a piezoelectric field cross the quantum wells. Chapter 5 discusses the effective of the piezoelectric field on the distortion of the energy-levels in the quantum wells. The distortion in the energy-levels changes the density distribution of the effective electron-hole pairs in the quantum wells. Then, the optical characteristics of the GaN-based LED, like emitting wavelength shifts and the internal quantum efficiency degrades. By studying this work, a new mechanism of the recombination behaviors of the electron-hole pairs in the quantum wells can be proposed, which can be used to calculate the efficiency of the GaN-based LED. Finally, the goal of this work is working on the relation among the stress in the GaN epi-layer, the piezoelectric field in the quantum wells, and the internal quantum efficiency of the GaN-based LED.
關鍵字(中) ★ 應力
★ 發光二極體
★ 晶圓鍵合關鍵字(英) ★ wafer bonding
★ LED
★ stress論文目次 Abstract(Chinese).........................................................................................................I
Abstract(English) ........................................................................................................II
Table of contents........................................................................................................IV
List of figures..............................................................................................................VI
List of tables................................................................................................................IX
Chapter 1 Background and Motivation.....................................................................1
1.1 Introduction of the GaN-based LEDs...........................................................................1
1.2 Introduction of the electrical fields in the GaN-based LEDs.................................3
Chapter 2 Commercial GaN-based LEDs..................................................................8
2.1 Compressive stress relieved by AuSn die-attachment process and its effect on optical properties of GaN-based LEDs......................................................8
Introduction............................................................................................................8
Experiment.............................................................................................................8
Results and discussions..........................................................................................9
Conclusion............................................................................................................15
Chapter 3 Fabrication processes of vertical thin-GaN LED chip..........................21
3.1 Structure of vertical thin-GaN LED.....................................................................21
3.2 Fabrication processes of vertical thin-GaN LED................................................24
3.3 Low temperature wafer bonding technique..........................................................27
3.4 Au/Ag diffusion wafer bonding for vertical thin-GaN LED fabrication..............29
Au/Ag diffusion bonding and inter-diffusion coefficient calculation..................30
Vertical thin-GaN LED chips fabricated by Au/Ag diffusion bonding...............32
Chapter 4 Stress evolution of GaN LED epi-layer on Si substrate.......................40
4.1 Relation among stress-level of GaN LED epi-layer, piezoelectric field, and IQE of vertical thin-GaN LED.....................................................................................40
4.2 Reduction of residual in-plane compressive stress of the GaN epi-layer
with Au/Ag and Cu/Sn/Ag bonding process........................................................42
Introduction..........................................................................................................42
Experiment...........................................................................................................43
Results and discussions........................................................................................44
Conclusion............................................................................................................53
Chapter 5 Stress effect on the optical properties of vertical thin-GaN LED........62
5.1 Piezoelectric field change in vertical thin-GaN LED by straining the Mo substrate................................................................................................................62
Introduction..........................................................................................................62
Experiment...........................................................................................................63
Results and discussions........................................................................................64
Conclusion............................................................................................................66
5.2 Behavior of electrons and holes transport and radiate in the GaN/InGaN
quantum wells........................................................................................69
Chapter 6 Conclusion.................................................................................................81
References...................................................................................................................83
參考文獻 1 R. Cingolani, A. Botchkarev, H. Tang, and H. Morkoç, G. Traetta, G. Coli, and M. Lomascolo,A. Di Carlo, F. Della Sala, and P. Lugli, Phys. Rev. B 61, 2711–2715 (2000).
2 F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. Lett. 79, 3958 (1997).
3 F. Bernardini and V. Fiorentini, Phys. Rev. B 57, R9427 (1998); Rapid Commun. Mass Spectrom. 57, 1 (1998) V. Fiorentini, F. Bernardini, F. Della Sala, A. Di Carlo, and P. Lugli, Phys. Rev. B 60, 8849 (1999).
4 Donald A. Neamen, McGraw-Hill 2005, p.176-p.193.
5 B. J. Skromme, H. Zhao, D. Wang, H. S. Kong, M. T. Leonard, G. E. Bulman, and R. J. Molnar, Appl. Phys. Lett. 71, 829, 1997.
6 S. Hearne, E. Chason, J. Han, J. A. Floro, J. Figiel, J. Hunter, H. Amano, and I. S. T. Tsong, Appl. Phys. Lett. 74, 356, 1999.
7 E. P. Pokatilov D. L. Nika V. M. Fomin and J. T. Devreese, Phys. Rev. B 77, p. 125328, 2008.
8 Fabio Bernardini, Vincenzo Fiorentini and David Vanderbilt, Phys. Rev. B 56, R10024 - R10027, 1997.
9 J. M. Zhang, T. Ruf, M. Cardona, O. Ambacher, M. Stutzmann, J.-M. Wagner and F. Bechstedt, Phys. Rev. B 56, 14399–14406, 1997.
10 D Kirillov, H Lee and JS Harris Jr, J. Appl. Phys. 80, 4058, 1996.
11 T. Kozawa, T. Kachi, H. Kano, H. Nagase, N. Koide, and K. Manabe, J. Appl. Phys. 77, p. 4389, 1995.
12 C. F. Peng, C. Y. Chen, C. F. Lu and C. C. Yang, Appl. Phys. Lett, 91 051121 2007.
13 L. H. Peng, C. W. Chuang and L. H. Lou, Appl. Phys. Lett, 77 (9) 795 1999.
14 Tetsuya Takeuchi, Christian Wetzel, Shigeo Yamaguchi, Hiromitsu Sakai, Hiroshi Amano, and Isamu Akasaki, Yawara Kaneko, Shigeru Nakagawa, Yoshifumi Yamaoka, and Norihide Yamada, Appl. Phys. Lett. 73, 1691 1998.
15 C. L. Lin, S. J. Wang, and C. Y. Liu, Electrochemical and Solid-State Letters, vol.8, (10), G265-G267, 2005.
16 S. C. Hsu, and C. Y. Liu, Electrochemical and Solid-State Letters, vol. 9 G171-G173, 2006.
17 Mona R. Safadi, Jagdish S. Thakur, and Gregory W. Auner, J. Appl. Phys. 97, 084901, 2005.
18 A. Bykhovski, B. Gelmont, M. Shur, and A. Khan, J. Appl. Phys. 77, 1616, 1995.
19 W. S. Wong, A. B. Wengrow, Y. Cho, A. Salleo, N. J. Quitoriano, N. W. Cheung and T. Sands, Journal of Electronic Materials, Volume 28, Number 12, 1409-1413, 2000.
20 M. Alexe and U. GÖsele, Wafer Bonding Application and Technology, Springer, 2004, Berlin.
21 P. H. Chen, C. L. Lin and C. Y. Liu, Appl. Phys. Lett, 90 (13), 132120, 2007.
22 Frank Shi, K. L. Chang, John. Epple, C. F. Xu, K. Y. Cheng, and K. C. Hsieh, J. Appl. Phys., 92, 7544, 2002.
23 Frank Shi, Hao Chen, Scott Maclaren, Appl. Phys. Lett., 84, 3504, 2004.
24 K. N. Chen, A. Fan, C. S. Tan, R. Reif and C. Y. Wen, Appl. Phys. Lett., 81, 3774, 2002.
25 U. GÖsele, Y. Bluhm, G. Kästner, P. Kopperschmidt, G. Kräuter, R. Scholz, A. Schumacher, St. Senz, and Q.-Y. Tong, Y.-L. Chao, and T. H. Lee, J. Vac. Sci. Technol. A, 17 (4), 1145, 1999.
26 J Arokiaraj, S Tripathy, S Vicknesh, and A Ramam, Appl. Phys. Lett, 88 (22), 22190, 2006.
27 H. B. Huntington, in Diffusion in Solids: Recent Developments, edited by A. S. Nowick and J. J. Burton _Academic, New York, 1979_, pp. 303–352
28 E. Robert. Reed-Hill and Reza Abbaschian, Physical Metallurgy Principles, 3th ed, PWS-Kent Pub, 1992, Boston.
29 S. C. Hsu, and C. Y. Liu, Electrochemical and Solid-State Letters, 9 G171-G173, 2006.
30 S. C. Hsu, B. J. Pong, W. H. Li, T. E Beechem, S. Graham and C. Y. Liu, Appl. Phys. Letts., 91, 25, 251114, 2007.
31 E. P. Pokatilov D. L. Nika V. M. Fomin and J. T. Devreese, Phys. Rev. B 77, p. 125328, 2008.
32 T. Kozawa, T. Kachi, H. Kano, Y. Taga, M. Hashimoto, N. Koide, and K. Manabe, J. Appl. Phys. 75, 1098, 1994.
33 T. Kozawa, T. Kachi, H. Kano, H. Nagase, N. Koide, and K. Manabe, J. Appl. Phys. 77, p. 4389, 1995.
34 J. M. Zhang, T. Ruf, M. Cardona, O. Ambacher, M. Stutzmann, J.-M. Wagner and F. Bechstedt, Phys. Rev. B 56, 14399–14406, 1997.
35 D Kirillov, H Lee and JS Harris Jr, J. Appl. Phys. 80, 4058, 1996.
36 R. C. Powell, N.‐E. Lee, Y.‐W. Kim, and J. E. Greene, J. Appl. Phys. 73, 189, 1993.
37 D. G. Zhao, S. J. Xu, M. H. Xie, S. Y. Tong, and Hui Yang, Appl. Phys. Lett. 83, 677, 2003.
38 S. Hearne, E. Chason, J. Han, J. A. Floro, J. Figiel, J. Hunter, H. Amano, and I. S.T. Tsong, Appl. Phys. Lett., 74, 356 1999.
39 C. L. Chang, Y. C. Chuang, and C. Y. Liu, Electrochem. Solid-State Lett., Vol. (10), H344-H346, 2007.
40 H.-J. Albrecht, A. Juritza, K. Muller, W.H. Muller, J. Sterthaus, J. Villain, A. Vogliano, IEEE. Electronics Packaging Technology, 2003 5th Conference, p. 726-731.
41 T. Kozawa, T. Kachi, H. Kano, H. Nagase, N. Koide, and K. Manabe, J. Appl. Phys., 77, 4389, 1995.
42 Fabio Bernardini, Vincenzo Fiorentini and David Vanderbilt, Phys. Rev. B 56, R10024 - R10027, 1997.
43 Keshu Wan, Alessandro Alan Porporati, Gan Feng, Hui Yang, and Giuseppe Pezzotti, Appl. Phys. Lett. 88, 251910, 2006.
44 Kenneth J. Vampola, Michael Iza, Stacia Keller, Steven P. DenBaars, and Shuji Nakamura, Appl. Phys. Lett. 94, 061116, 2009.
45 A. Bonfiglio, M. Lomascolo, G. Traetta, R. Cingolani, A. Di Carlo, F. Della Sala, P. Lugli, A. Botchkarev, and H. Morkoc, J. Appl. Phys. 87, 2289 (2000).
46 Donald A. Neamen, McGraw-Hill 2005, p.55-p.77
指導教授 劉正毓(Chengyi Liu) 審核日期 2010-11-7 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare