博碩士論文 965201048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:96 、訪客IP:3.141.29.162
姓名 林育昭(Yu-Chao Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 砷化銦/銻化鋁高電子遷移率場效電晶體製程開發與元件特性之研究
(Device Fabrication and Characterization of InAs/AlSb High Electron Mobility Transistors)
相關論文
★ 增強型異質結構高速移導率電晶體大信號模型之建立及其在微波放大器之應用★ 空乏型暨增強型Metamorphic HEMT之製作與研究
★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用★ 氧化鋁基板上微波功率放大器之研製
★ 氧化鋁基板上積體化微波降頻器電路之研製★ 順序特徵結構設計研究及其應用在特徵模子去耦合與最小特徵值靈敏度
★ 順序特徵結構設計研究及其應用在最大強健穩定度與最小迴授增益★ LDMOS功率電晶體元件設計、特性分析及其模型之建立
★ CMOS無線通訊接收端模組之設計與實現★ 積體化微波被動元件之研製與2.4GHz射頻電路設計
★ 異質結構高速移導率電晶體模擬、製作與大訊號模型之建立★ 氧化鋁基板微波電路積體化之2.4 GHz接收端模組研製
★ 氧化鋁基板上積體化被動元件及其微波電路設計與研製★ 二維至三維微波被動元件與射頻電路之設計與研製
★ CMOS射頻無線通訊發射端電路設計★ 次微米金氧半場效電晶體高頻大訊號模型及應用於微波積體電路之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) InAs因擁有高電子遷移率、高電子飽和速度及低能隙,故適於應用在低功率和高速的電子元件;然而,在高電場下引發衝擊離化所產生的電洞將因InAs/AlSb的第二型能帶對齊方式而無法侷限於通道層,造成了元件輸出電導隨著汲極電壓上升而增加的缺點。本論文除了敘述元件的製程發展和探討元件特性外,也提出改善元件kink效應的方式。
製程發展包含歐姆接觸、元件隔離與鈍化製程。在300 ℃維持20秒的快速熱退火條件可製作出低於0.1 Ω-mm的歐姆接觸電阻;透過元件隔離製程後隨即覆蓋SiO2鈍化層改善了AlxGa1-xSb材料所造成的不穩定及元件漏電流。傳統Si3N4鈍化實驗上則得到的最佳鈍化條件為300 ℃。
元件特性上,在超薄n+-InAs摻雜及SiO2鈍化的元件可得到103.3 mV/dec的次臨界斜率;閘極長度為2.25 mm的元件得到63 GHz-mm的fT - Lg乘積,而Si3N4鈍化後,Te面摻雜的元件之汲極電流可到達320 mA/mm。在kink效應的改善上,透過InAsSb/AlSb HEMT的第一型能帶對齊方式可有效地將kink電流從汲極電壓為0.35 V改善至0.6 V。最後也設計不同的場效電板(Field plate)來抑制InAs/AlSb HEMT元件上的kink效應。
摘要(英) High mobility, high peak velocity, and small bandgap associated with the InAs channel material are suitable for low power and high speed applications. However, large amount of holes are generated by impact ionization and result in serious kink effect and increased gate currents. In the thesis, we develop processes for device fabrication and characterize dc and rf properties of the InAs/AlSb HEMTs.
The device development includes ohmic contact, mesa isolation, and passivation. Using rapidly thermal annealing at 300 ℃ for 20s, ohmic contact resistance as low as 0.1 Ω-mm is achieved. To improve chemical stability of mesa floor and side wall, we perform 1st passivation immediately after defining the device mesa. Gate leakage is thus improved. Optimized passivation condition for conventional Si3N4 passivant deposited after Schottky gate is 300 ℃.
For the HEMT structure using a thin n+-InAs as modulation doping sheet and fabricated by the developed passivation scheme, low subthreshold slope of 103.3 mV/dec. and high fT - Lg product of 63 GHz-mm is obtained in a device with 2.25 mm gate length. It is observed the device with Si3N4 passivation yields enhanced driving current, which are attributed to increased carrier density and electric field. As for the kink current improvement, type-I InAsSb/AlSb HEMTs and implementation of dual gate both effectively improve the kink effect.
關鍵字(中) ★ 砷化銦/銻化鋁
★ 扭結效應
★ 高電子遷移率場效電晶體
關鍵字(英) ★ InAs/AlSb
★ HEMT
★ kink effect
論文目次 摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 XI
第一章 導論 1
1-1研究動機 1
1-2 InAs/AlSb HEMT之發展現況 4
1-3論文架構 12
第二章 砷化銦/銻化鋁高電子遷移率電晶體製程與元件發展 13
2-1前言 13
2-2歐姆接觸製程 13
2-2-1金屬製程 15
2-2-2熱退火製程 20
2-3隔離製程 24
2-4鈍化製程 30
2-4-1第一層SiO2鈍化製程 30
2-4-2第二層Si3N4鈍化製程 34
2-5結論 36
第三章 砷化銦/銻化鋁高電子遷移率電晶體之元件特性 38
3-1前言 38
3-2元件結構與能帶設計 38
3-3無摻雜之InAs/AlSb HEMT 44
3-4超薄n+-InAs之InAs/AlSb HEMT 48
3-5 Te面摻雜之InAs/AlSb HEMT 52
3-6 Te面摻雜之InAsSb/AlSb HEMT 55
3-7結論 58
第四章 抑制衝擊離化與鈍化方式對元件特性之比較與討論 59
4-1前言 59
4-2 SiO2鈍化之影響 59
4-3 Si3N4鈍化之影響 61
4-4衝擊離化效應之討論 65
4-4-1第一型能帶元件對kink效應抑制 65
4-4-2場效電板對第二型能帶元件kink效應抑制 69
4-5結論 82
第五章 結論與未來發展 83
參考文獻 86
附錄 90
參考文獻 [1] L.D. Nguyen, L.E. Larson, U.K. Mishra, “Ultra-high speed modulation-doped field- effect transistors : a tutorial review,” Proc. of the IEEE, vol. 80, pp. 494-518, Apr, (1992).
[2] N. Moll, M.R. Hueschen, and A. Fischer-Colbrie, “Pulsed doped AlGaAs/InGaAs pseudomorphic MODFET’s,” IEEE Trans. Electron Dev., vol. 35, pp. 878-886, (1988).
[3] L.D. Nguyen, A.S. Brown, M.A. Thompson, and L.M. Jelloian, “50 nm self-aligned-
gate pseudomorphic AlInAs/GaInAs high electron mobility transistors,” IEEE Trans. Electron Dev., vol. 39, pp. 2007-2014, (1992).
[4] K. Shinohara, Y. Yamashita, A. Endoh, I. Watanabe, K. Hikosaka, T. Mimura, S. Hiyamizu and T. Matsui, “550 GHz- pseudomorphic InP-HEMTs with reduced source-drain resistance,” Proc. 61st Device Research Conference, pp. 145-146, June, (2003).
[5] J.B. Boos, W. Kruppa, B.R. Bennett, D. Park, S.W. Kirchoefer et al., “AlSb/InAs HEMTs for low-voltage, high-speed applications,” IEEE Trans. Electron. Devices, vol. 45, pp. 1869–1875, (1998).
[6] C. Nguyen, B. Brar, C.R. Bolognesi, J.J. Pekarik, H. Kroemer, and J.H. English, “Growth of InAs/AlSb quantum wells having both high mobilities and high electron concentrations,” J. Electron. Mat., vol. 22, pp. 255-258, (1993).
[7] C.A. Chang, R. Ludeke, L.L. Chang, L. Esaki, “Molecular-beam epitaxy (MBE) of InGaAs and GaSbAs,” Appl. Phys. Lett., vol. 31, pp. 759–761, (1977).
[8] M. Yano, Y. Suzuki, T. Ishii, Y. Matsushima, M. Kimata,“Molecularbeam epitaxy of GaSb and GaSbAs,” Jpn. J. Appl. Phys., vol. 17, pp. 2091–2096, (1978).
[9] R. Ludeke, “Electronic properties of (100) surfaces of GaSb and InAs and their alloys with GaAs,” IBM J. Res. Dev., vol. 22, pp. 304–314, (1978).
[10] G. Tuttle, H. Kroemer, J.H. English, “Electron concentrations and mobilities in AlSb/InAs/ AlSb quantum wells,” J. Appl. Phys., vol. 65, pp. 5239–5242, (1989).
[11] G. Tuttle, H. Kroemer, J.H. English, “Effects of interface layer sequencing on the transport-properties of InAs/AlSb quantum wells evidence for antisite donors at the InAs/AlSb interface,” J. Appl. Phys., vol.67, pp. 3032–3037, (1990).
[12] C.R. Bolognesi, H. Kroemer, J.H. English, “Well width dependence of electron- transport in molecular-beam epitaxially grown InAs/AlSb quantum-wells,” J. Vac. Sci Technol, B, vol. 10, pp. 877–879, (1992).
[13] J.B. Boos, W. Kruppa, B.R. Bennett, D. Park, S.W. Kirchoefer, R. Bass,et al, ”AlSb/InAs HEMT_s for low-voltage, high-speed applications,” IEEE Trans. Electron. Dev. vol. 45, pp. 1869–1875, (1998).
[14] R. Venkatasubramanian, D.L. Dorsey, K. Mahalingam, ”Heuristic rules for group IV dopant site selection in III–V compounds,” J. Cryst. Growth. vol. 175 pp. 224–228, (1997).
[15] Y. Zhao, M.J. Jurkovic, W.I. Wang, “Kink-free characteristics of AlSb/InAs high electron mobility transistors with planar Si doping beneath the channel,” IEEE Trans. Electron. Dev. vol. 45, pp. 341–342, (1998).
[16] C.R. Bolognesi, M.W. Dvorak, D.H. Chow, “High-transconductance delta-doped InAs/ AlSb HFET_s with ultrathin silicon-doped InAs quantum well donor layer,” IEEE Electron. Dev. Lett. vol. 19, pp. 83–85, (1998).
[17] B.R. Bennett, M.J. Yang, B.V. Shanabrook, J.B. Boos, D. Park,”Modulation doping of InAs/AlSb quantum wells using remote InAs donor layers,” Appl. Phys. Lett. vol. 72, pp. 1193–1195, (1998).
[18] C.R. Bolognesi, J.E. Bryce, D.H. Chow, “InAs channel heterostructurefield effect transistors with InAs/AISb short-period superlattice barriers,” Appl. Phys. Lett. vol. 69, pp.3531–3533, (1996).
[19] S. Subbanna, G. Tuttle, H. Kroemer, “N-type doping of gallium antimonide and aluminum antimonide grown by molecular-beam epitaxy using lead-telluride as a tellurium dopant source,” J. Electron. Mater. vol. 17, pp. 297–303, (1988).
[20] B.R. Bennett, R. Magno, J.B. Boos, W. Kruppa, M.G. Ancona, “Antimonide-based compound semiconductors for electronic devices: A review,” Solid-State Electron. vol.49, pp. 1879. (2005).
[21] J.B. Boos, B.R. Bennett, W. Kruppa, D. Park, J. Mittereder, R. Bass et al., “Ohmic contacts in AlSb InAs high electron mobility transistors for low-voltage operation,” J. Vac. Sci. Technol. B., vol. 17, pp. 1022–1027 (1999).
[22] R. Tsai, M. Barsky, J.B. Boos, B.R. Bennett, J. Lee, N.A. Papanicolaou, et al, “Metamorphic AlSb/InAs HEMT for low-power, high-speed electronics,” Proc. IEEE GaAs IC symp., pp. 294–297, (2003).
[23] J. Bergman, G. Nagy, G. Sullivan, B. Brar, C. Kadow, H.K. Lin, et al, “InAs/AlSb HFETs with fT and fmax above 150 GHz for low-power MMICs,” Proc. InP related mater conf., pp. 219–222, (2003).
[24] J. Bergman, G. Nagy, G. Sullivan, A. Ikhlassi, B. Brar, C. Kadow, et al, “Low-voltage, high-performance InAs/AlSb HEMTs with power gain above 100 GHz at 100 mV drain bias,” Dev. Res. Conf., pp. 243–244, (2004).
[25] B. Brar, “Impact ionization in InAs-AlSb heterostructure field-effect-transistors,” Ph.D. dissertation, UC Santa Barbara, (1995).
[26] H.K. Lin , “The Design, Growth, and Characterization of Antimonide-Based Composite- Channel Heterostructure Field-Effect Transistors,” Ph.D. dissertation, UC Santa Barbara, (2004).
[27] K.F. Longenbach, R. Beresford, W.I. Wang, “Application of split-gate and dual-gate field-effect transistor designs to InAs field-effect transistors,” Solid-State Electron, vol. 33, pp. 1211–1213, (1990).
[28] J.B. Boos, W. Kruppa, D. Park, “Reduction of gate current in AlSb/InAs HEMTs using a dual-gate design,” Electron Lett., vol. 32, pp. 1624–1625, (1996).
[29] C.R. Bolognesi, D.H. Chow, “InAs/AlSb dual-gate HFETs,” IEEE Electron Dev. Lett., vol. 17, pp. 534–536, (1996).
[30] T. Shibata, J. Nakata, Y. Nanishi, and M. Fujimoto, “A Rutherford Backscattering Spectroscopic Study of the Aluminum Antimonide Oxidation Process in Air,” Jpn. J. Phys., vol. 33, pp. 1767-1772, (1994).
[31] C. Gatzke, S.J. Webb, K. Fobelets and R.A. Stradling, “In situ Raman spectroscopy of the selective etching of antimonides in GaSb/AlSb/InAs heterostructures,” Semicond. Sci. Technol., vol. 13, pp. 339-403, (1998)
[32] J.O. Sullivan, S. Burgess, N. Rimmer, “Metal lift-off using physical vapour deposition,” Microelectronic Engineering, vol. 64, pp. 473–478, (2002).
[33] H.J. Ueng, D.B. Janes, K.J. Webb, “Error Analysis Leading to Design Criteria for Transmission Line Model Characterization of Ohmic Contacts,” IEEE transactions on electron devices, vol. 48, April (2001).
[34] David C. Look, Electrical Characterization of GaAs Materials and Devices, John Wiley & Sons Ltd, (1989).
[35] M. Arps, H.G. Bach, W. Passenberg, A. Umbach, and W. Schlaak, “Influence of SiN, passivation on the surface potential of GaInAs and AlInAs in HEMT structures,” IEEE Indium Phosphide and Related Materials Conference, pp.308-311, (1996).
[36] J.D. Werking, C.R. Bolognesi, L.D. Chang, C. Nguyen, E.L. Hu, and H. Kroemer, “High-transconductance InAs/AlSb heterojunction fieldeffect transistors with δ-doped AlSb upper barriers,” IEEE Electron Device Lett., vol. 13, pp. 164–166, (1992).
[37] J.B. Boos, M.J. Yang, B.R. Bennett, D. Park, W. Kruppa and R. Bass, “Low-voltage, high-speed AlSb/InAsSb HEMTs,” IEEE Electron Device Lett., Vol. 35, (1999).
指導教授 林恒光、詹益仁
(Heng-Kuang Lin、Yi-Jen Chan)
審核日期 2009-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明