以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:56 、訪客IP:3.128.198.90
姓名 許名宏(Min-hung Hsu) 查詢紙本館藏 畢業系所 電機工程學系 論文名稱 單一顆與耦合鍺量子點穿隧二極體之研製與電性分析
(Single and double Ge-QD tunneling diodes fabrication and study)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本論文係利用製作不同大小的奈米溝渠(寬度、長度)與側壁材料,以求達到有效地控制鍺量子點形成的位置、量子點形成顆數與穿隧介電層厚度之目的。當矽鍺奈米溝渠寬度為40 nm以下完全被氧化後,若側壁為SiO2 spacer時,可觀察到形成一排分佈於奈米溝渠中間的鍺量子點;而若側壁為Si3N4 spacer時,可觀察到形成一排隨機分散於溝渠內的鍺量子點。反之當矽鍺奈米溝渠寬度為50~70 nm時,不論側壁為SiO2或Si3N4,在氧化後皆可觀察到形成兩排分佈於奈米溝渠邊緣的鍺量子點。為了控制量子點的顆數,可以再藉由調變奈米溝渠的長度來有效地控制鍺量子點顆數。當奈米溝渠側壁為氮化矽且寬度在50 nm以下、溝渠長度60 nm以下時,可觀察到在氧化後奈米溝渠中存在有單一顆鍺量子點,此量子點大小約為10 nm。當溝渠長度為110 nm時,可觀察到在氧化後有兩顆鍺量子點分布在奈米溝渠中。溝渠長度為180 nm時,可觀察到在氧化後有三顆鍺量子點分布在奈米溝渠中;溝渠長度為300 nm時,可觀察到在氧化後有四顆鍺量子點分布在奈米溝渠中。而奈米溝渠側壁為氮化矽的條件下,鍺量子點皆分布在奈米溝渠的兩側邊緣。利用此結果我們成功地製作出單一顆鍺量子點與兩顆量子點(耦合量子點)鍺量子點穿隧二極體,並對元件current-voltage ( ID-VD)及differential conductance voltage ( G-V)做電性分析,進一步探討量子點內的量子效應。
摘要(英) The main purpose of this thesis is to control the position and the numbers of Ge quantum dots (QDs) and the thickness of tunneling barrier by way of modulating the width and the length of oxidized SiGe nano-trenches and the materials adopted for spacer layers. For SiGe trenches with SiO2 spacers having an trench width of less than 40 nm, Ge QDs line up in the center of oxidized trenches. In contrast, for SiGe trenches with Si3N4 spacers having the same trench width, Ge QDs reside randomly either in the center or near the edges of oxidized trenches. In order to control the number of Ge QDs, we can further change the length of SiGe nano-trench. For SiGe trenches with Si3N4 spacers having an trench width less than 50 nm and length less than 60 nm, a single Ge QD reside randomly in oxidized trenches with an average dot size of about 10 nm. In contrast, for SiGe trenches with Si3N4 spacers having the same trench width and length of 110 nm, twin Ge QDs reside in oxidized trenches. For SiGe trenches with length of 180 or 300 nm, we observed three and four Ge QDs precipitation nearby Si3N4 spacers, respectively. Using this result, we have fabricated a single and coupled Ge QD tunneling diodes and analyzed their electrical characteristics, we can discuss the quantum confinement effect in detail by way of the measured I-V and differential conductance voltage (G-V) characteristics. It is reasonable to expect that effective single-electron and coupled QD devices could be realized by means of this method.
關鍵字(中) ★ 奈米溝渠
★ 量子點
★ 穿隧二極體關鍵字(英) ★ quantum dots
★ nanotrench
★ tunneling diodes論文目次 中文摘要 .................................................i
英文摘要 ...............................................iii
致謝 .....................................................v
目錄 ................................................... vi
圖目錄 ............................................... viii
第一章 簡介與研究動機 ................................... 1
1-1 半導體元件的發展 .................................... 1
1-2 單電子元件的演進及應用............................... 2
1-3 量子點材料及製作方式................................. 4
1-4 矽化金屬的發展與形成................................. 6
1-5 研究動機 ............................................ 7
第二章 共振穿隧二極體與單電子電晶體之操作原理........... 17
2-1 基本概念............................................ 17
2-2 固定VG (VG=0)、調變VDS............................ 18
第三章 鍺量子點的分布情形 ...............................27
3-1 前言 ............................................... 27
3-2 製作流程 ........................................... 27
3-3 實驗結果............................................ 28
第四章 共振穿隧二極體元件製作與元件特性分析............. 40
4-1 共振穿隧二極體元件製作流程.......................... 40
4-2 量測儀器與方法...................................... 56
4-3 元件電性分析 ....................................... 57
第五章 總結與未來展望 .................................. 69
參考文獻 ............................................... 70
參考文獻 [1] 陳啟東,「單電子電晶體簡介」,物理雙月刊,第二十六卷,第三期,483-490頁,2004年6月。
[2] T. A. Fulton and G. J. Dolan, “Observation of single-electron charging effects in
small tunnel junctions”, Phys. Rev. Lett., vol. 59, p. 109, 1987.
[3] Y. Nakamura, D. L. Klein, and J. S. Tsai, “Al/Al2O3/Al single electron transistors operable up to 30 K utilizing anodization controlled miniaturization enhancement,” Appl. Phys. Lett., vol. 68, p. 275, 1996.
[4] W. Chen, H. Ahmed and K. Nakazato, “Coulomb blockade at 77 K in nanoscale
metallic islands in a lateral nanostructure,” Appl. Phys. Lett., vol. 66, p. 3383, 1995.
[5] D. L. Klein, P. L. McEuen, J. E. B. Katari, R. Roth, and A. P. Alivisatos, ”An approach to electrical studies of single nanocrystals,” Appl. Phys. Lett., vol. 68, p. 2574, 1996.
[6] J. Y. Marzin, J. M. Gerard, A. Izrael,D. Barrier, and G. Bastard, “ Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs,” Phys. Rev. Lett., vol. 73, p. 716, 1994.
[7] Y. Maeda, N. Tsukamoto, Y. Yazawa, Y. Kanemitsu, and Y. Masumoto, “Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices,” Appl.
Phys. Lett., vol. 59, p. 3168-3170, 1993
[8] Matsumoto, K, ”STM/AFM nano-oxidation process to room-temperature-operated single-electron transistor and other devices”, Processdings of the IEEE, vol. 85, p. 612, 1997.
[9] Yasuo Takahashi, Hideo Namatsu and Kenji Kurihara, “Size dependence of the characteristics of Si single electron transistors on SIMOX substrates,” IEEE Trans, Electron Devices, vol. 43, p1213, 1996.
[10] M. E. Rubin et al. “Imaging and spectroscopy of single InAs self-assembled quantum dots using ballistic electron emission microscopy,” Phys. Rev. Lett., vol. 77, p. 5268, 1996.
[11] Lei Zhuang, Lingjie Guo, and Stephen Chou, “Silicon single-electron quantum-dot transistor switch operating at room temperature,” Phys. Rev. Lett., vol. 72, p.1205, 1998.
[12] H. Iwai et. al., “NiSi salicide technology for scaled CMOS,” Microelectronic Engineering, vol. 60, p. 157, 2002.
[13] M. Saitoh, H. Harata and T. Hiramoto, “Room-temperature demonstration of
integrated silicon single-electron transistor circuit for current switching and analog pattern matching,” in IEDM Tech Dig., p. 187, 2004.
[14] W. T. Lai and P. W. Li, “Growth kinetics and related physical/electrical properties of Ge quantum dot formed by thermal oxidation of Si1-xGex on insulator,”Nanotechnol., vol. 18, p. 145402, 2007.
[15] 陳冠宏, “應用於高效率單電子元件鍺量子點之研製:鍺量子點定位與定量之探討,” 碩士論文, 國立中央大學, 民國98年.
[16] Donald A. Neamen, “SEMICONDUCTOR PHYSICS AND DEVICES,” 3nd Edition, p. 122, 2003.
[17] Y. Saito, “Crystal structure and habit of silicon and germanium particles grown in argon gas,” J. Cryst. Growth, vol. 47, p. 61-72, 1979.
[18] 顏瑋廷, “自對準矽奈米線金氧半場效電晶體之研製,” 碩士論文, 國立中央大學, 民國95年.
[19] Y. Kanemitsu, H. Uto, Y. Masumoto, and Y. Maeda, “On the origin of visible
photoluminescence in nanometer-size Ge crystallites,” Appl. Phys. Lett., vol. 61,
p. 2187-2189, 1992.
[20] Tsu-Jae King and Krishna C. Saraswat, “Deposition and properties of low-pressure chemical vapor deposited polycrystalline silicon germanium film,” J. Electrochem. Soc., vol. 141, p. 2235, 1994.
[21] Min Cao, Albert Wang, Krishna C. Saraswat, “Low pressure chemical vapor
deposition of Si1-xGex film on SiO2, ” J. Electrochem. Soc., vol. 141, p. 1566, 1995.
[22] P. Lundgren and M. O. Andersson, “ Temperature dependence confirmation of tunneling through 2–6 nm Silicon dioxide,” Solid-State Electron. vol. 39, p. 1143, 1996.
[23] Mao LF, “ Temperature dependence of the tunneling current in metal-oxide- semiconductor devices due to the coupling between the longitudinal and transverse components of the electron thermal energy,” Appl. Phys. Lett. vol. 90, p. 183511, 2007.
[24] J. Shewchun, R. Singh, D. Burk, and F. Scholz, “ Temperature dependence of the current voltage characteristics of silicon MIS solar cells,” Appl. Phys. Lett., vol. 35, p. 416, 1979.
[25] J. Shewchun, R.Singh, and M.A. Green, “Theory of metal-insulator-semiconductor solar cells,” J. Appl. Phys., vol. 48, p.765, 1977.
指導教授 李佩雯(Pei-Wen Li) 審核日期 2009-8-26 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare