博碩士論文 965202034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.12.34.209
姓名 洪維湧(Wei-Yong Hong)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 應用於IEEE 802.16e行動無線都會網路中具電池壽命感知之電源節省機制
(Battery Lifetime-Aware Power-Saving Mechanism in IEEE 802.16e Mobile WMANs)
相關論文
★ 無線行動隨意網路上穩定品質服務路由機制之研究★ 應用多重移動式代理人之網路管理系統
★ 應用移動式代理人之網路協同防衛系統★ 鏈路狀態資訊不確定下QoS路由之研究
★ 以訊務觀察法改善光突發交換技術之路徑建立效能★ 感測網路與競局理論應用於舒適性空調之研究
★ 以搜尋樹為基礎之無線感測網路繞徑演算法★ 基於無線感測網路之行動裝置輕型定位系統
★ 多媒體導覽玩具車★ 以Smart Floor為基礎之導覽玩具車
★ 行動社群網路服務管理系統-應用於發展遲緩兒家庭★ 具位置感知之穿戴式行動廣告系統
★ 調適性車載廣播★ 車載網路上具預警能力之車輛碰撞避免機制
★ 應用於無線車載網路上之合作式交通資訊傳播機制以改善車輛擁塞★ 智慧都市中應用車載網路以改善壅塞之調適性虛擬交通號誌
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來,寬頻無線存取網路由於其頻寬與傳輸距離的提昇,使其變得越來越熱門。其中IEEE 802.16e標準(或稱Mobile WiMAX)是其中的一項技術可以提供固定式或是行動式的寬頻無線存取。在IEEE 802.16e標準下,由於所有的行動台(Mobile Stations, MSs)都是基於有限的電池電力下來運作的,因此在這種網路中,MS的電力節省就變成一個很重要的議題。雖然IEEE 802.16e標準有定義了睡眠模式的運作來提供電力節省的功能,且在睡眠模式的運作中有三個重要的參數:閒置門檻(Idle Threshold)、起始睡眠視窗(Initial Sleep Window)、最後睡眠視窗(Final Sleep Window)。這三個參數對於平均延遲與電力消耗有重大的影響,但是IEEE 802.16e標準並沒有定義任何機制來設定這些參數的值。
  本篇論文提出了一個具電池壽命感知的電源節省機制來改善睡眠模式的能源效率。三個重要的睡眠模式參數將會根據每個用戶台不同的電池壽命情形來進行動態地調整,這樣的好處在於可以讓使用者在電力消耗與封包延遲之間取得一個平衡,而不是從頭到尾參數的值都是一樣的。所提機制能夠減少花在閒置的時間,也能降低平均的電力消耗,進而延長用戶台的總存活時間。透過電腦模擬的結果顯示,所提機制最多能比IEEE 802.16e標準讓用戶台提高30.08%的總存活時間,能夠作為睡眠模式運作在實作上的一個參考指南。
摘要(英) Recently, the broadband wireless access (BWA) network becomes more and more popular. The IEEE 802.16e is one of such technologies and has been standardized for fixed or mobile BWA systems. Because all mobile stations (MSs) operate on the limited battery power, power-saving for MSs in this network becomes a very important issue. Although the IEEE 802.16e standard adopts the sleep mode operation for power-saving and there are three parameters, the idle threshold, the initial sleep window, the final sleep window, it does not define any mechanism to setup these parameters. However, these parameters impose significant effect to average delay and average power consumption.
  Battery Lifetime-Aware Power Saving (BLAPS) mechanism is proposed in this thesis to improve the energy efficiency of the sleep mode. These three sleep mode operation parameters was adaptively setup by considering battery lifetime of each MS. Benefits of proposed mechanism are to reduce the idle time and the power consumption and to increase the total alive time of MSs. The proposed BLAPS mechanism was validated through computer simulation using QualNet 4.5. The simulation results show that the proposed BLAPS mechanism performs up to 30.08% better than the IEEE 802.16e standard in terms of average alive time of MSs. Our work may be a guideline for implementing the sleep mode operation.
關鍵字(中) ★ IEEE 802.16e
★ 電力節省
★ 睡眠模式
關鍵字(英) ★ IEEE 802.16e
★ Power Saving
★ Sleep Mode
論文目次 Chapter 1. Introduction 1
1.1 Overview 1
1.2 Motivations and Goals 2
1.3 Organization 3
Chapter 2. Background and Related Work 4
2.1 Overview of IEEE 802.16e Service Classes 5
2.2 Overview of Sleep Mode Operation in IEEE 802.16e 7
2.2.1 Power Saving Classes of type I 8
2.2.2 Power Saving Classes of type II 10
2.2.3 Power Saving Classes of type III 12
2.3 Related Researches 13
2.4 Summary 17
Chapter 3.The Proposed Battery Lifetime-Aware Power Saving18
3.1 Adaptively Adjust the Parameters 20
3.1.1 Adjust Idle Threshold 21
3.1.2 Adjust Initial Sleep Window 24
3.1.3 Determine Final Sleep Window 26
3.2 Procedure 29
3.3 Analytical Model 34
Chapter 4. Performance Evaluation and Discussions 37
4.1 Simulation Environment 37
4.2 Simulation Results 39
4.2.1 Simulation 1: Impact of Idle Threshold 39
4.2.2 Simulation 2: Impact of Initial Sleep Window 43
4.2.3 Simulation 3: Impact of Final Sleep Window 47
4.2.4 Simulation 4: Compare with other mechanisms 50
Chapter 5. Conclusions and Future Works 54
5.1 Conclusions 54
5.2 Future Works 54
References 55
參考文獻 [1]IEEE 802.16-2001, “IEEE Standard for Local and Metropolitan Area Networks - Part16: Air Interface for Fixed Broadband Wireless Access Systems,” Apr. 2002.
[2]IEEE 802.16-2004, Part 16: Air Interface for Fixed Broadband Wireless Access Systems, Standard for Local and Metropolitan Area Networks, Oct. 2004.
[3]IEEE Std 802.16e-2005, IEEE Standard for Local and Metropolitan Area Networks - Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems, Feb. 2006.
[4]C. E. Jones, K. M. Sivalingam, P. Agrawal and J. C. Chen, “A Survey of Energy Efficient Network Protocols for Wireless Networks,” ACM Wireless Networks, vol. 7, issue 4, pp. 343-358, Aug. 2001.
[5]J.-W. So and D.-H. Cho, “On Effect of Timer Object for Sleep Mode Operation in cdma2000 System,” Proceedings of the IEEE ICC 2000 - International Conference on Communications, vol. 1, pp. 555-559, New Orleans, USA, Jun. 2000.
[6]C.-C. Lee, J.-H. Yeh and J.-C. Chen, “Impact of Inactivity Timer on Energy Consumption in WCDMA and cdma2000,” Proceedings of the WTS 2004 - Wireless Telecommunications Symposium, pp. 15-24, Pomona, California, May. 2004.
[7]S.-R Yang and Y.-B. Lin, “Modeling UMTS Discontinuous Reception Mechanism,” IEEE Transactions on Wireless Communications, vol. 4, issue 1, pp. 312-319, Jan. 2005.
[8]G. S. V. R. K Rao and G. Radhamani, “WiMax: A Wireless Technology Revolution,” Auerbach Publications, 2007
[9]J. G. Andrews, A. Ghosh and R. Muhamed, “Fundamentals of WiMAX: Understanding Broadband Wireless Networking,” Prentice Hall, 2007.
[10]Y. Zhang and H.-H. Chen, “Mobile WiMAX: toward broadband wireless metropolitan area networks,” Auerbach Publications, 2007
[11]C. So-In, R. Jain and A.-K. Tamimi, “Scheduling in IEEE 802.16e Mobile WiMAX Networks: Key Issues and a Survey,” IEEE Journal on Selected Areas in Communications, vol. 27, issue 2, pp. 156-171, Feb. 2009.
[12]F. Ohrtman, “WiMAX Handbook: Building 802.16 Wireless Networks,” McGraw-Hill, 2005.
[13]K. Wongthavarawat and A. Ganz, “Packet Scheduling for QoS Support in IEEE 802.16 Broadband Wireless Access Systems,” International Journal of Communication Systems, vol. 16, no. 1, pp. 81-96, Feb. 2003.
[14]S. Ahson and M. Ilyas, “WiMAX: Applications,” CRC Press, 2007.
[15]H. Labiod, H. Afifi and C. D. Santis, “Wi-fi, Bluetooth, Zigbee and Wimax,” Springer, 2007.
[16]S. Ahson and M. Ilyas, “WiMAX: Technologies, Performance Analysis, and Qos,” CRC Press, 2007.
[17]J.-B. Seo, S.-Q. Lee, N.-H. Park, H.-W. Lee, and C.-H. Cho, “Performance analysis of sleep mode operation in IEEE 802.16e,” Proceedings of the IEEE VTC 2004 Fall - Vehicular Technology Conference, vol. 2, pp. 1169–1173, Los Angeles, CA, USA, Sep. 2004.
[18]M. Riegel, D. Kroeselberg and A. Chindapol, “Deploying Mobile Wimax,” John Wiley & Sons Inc, 2009.
[19]S.-T. Sheu, Y.-C. Cheng, L.-W. Chen, J.-S. Wu and J. Chang, “Listening Interval Spreading Approach (LISA) for Handling Burst Traffic in IEEE 802.16e Wireless Metropolitan Area Networks,” Proceedings of the IEEE VTC 2008 Fall - Vehicular Technology Conference, Calgary, Canada, Sep. 2008.
[20]M.-G. Kim, J. Y. Choi, and M. Kang, “Adaptive Power Saving Mechanism Considering the Request Period of Each Initiation of Awakening in the IEEE 802.16e System,” IEEE Communications Letters, vol. 12, no. 2, pp. 106-108, Feb. 2008.
[21]J. R. Lee and D. H. Cho, “An Optimal Power-Saving Class II for VoIP Traffic and its Performance Evaluations in IEEE 802.16e,” Computer Communications, vol. 31, issue 14, pp. 3204-3208, Sep. 2008.
[22]S.-L. Tsao and Y.-L. Chen, “Energy-Efficient Packet Scheduling Algorithms for Real-Time Communications in a Mobile WiMAX System,” Computer Communications, vol. 31, issue 10, pp. 2350-2359, June 2008.
[23]M. D. Katz and F. H. P. Fitzek, “Wimax Evolution: Emerging Technologies and Applications,” John Wiley & Sons Inc, 2009.
[24]Y.-L. Chen and S.-L. Tsao, “Energy-Efficient Sleep-mode Operations for Broadband Wireless Access Systems,” Proceedings of the IEEE VTC 2006 Fall - Vehicular Technology Conference, Montréal, Canada, Sep. 2006.
[25]S. Alouf, E. Altman and A. P. Azad, “Analysis of an M/G/1 Queue with Repeated Inhomogeneous Vacations with Application to IEEE 802.16e Power Saving Mechanism,” Proceedings of the QEST 2008 - International Conference on Quantitative Evaluation of SysTems, pp. 27-36, St Malo, France, Sep. 2008.
[26]J.-B. Seo, S.-Q. Lee, N.-H. Park, H.-W. Lee and C.-H. Cho, “Performance Analysis of Sleep Mode Operation in IEEE 802.16e,” Proceedings of the IEEE VTC 2004 Fall - Vehicular Technology Conference, vol. 2, pp. 1169-1173, Los Angeles, USA, Sep. 2004.
[27]Y. Xiao, “Energy Saving Mechanism in the IEEE 802.16e Wireless MAN,” IEEE Communications Letters, vol. 9, no. 7, pp. 595-597, July 2005.
[28]Y. Xiao, “Performance Analysis of an Energy Saving Mechanism in the IEEE 802.16e Wireless MAN,” Proceedings of IEEE CCNC 2006 - Consumer Communications and Networking Conference, pp. 406-410, Las Vegas, Nevada, USA, Jan. 2006.
[29]Y. Zhang and M Fujise, “Energy Management in the IEEE 802.16e MAC,” IEEE Communications Letters, vol. 10, no. 4, pp. 311-313, April 2006.
[30]K. Han, S. Choi, ”Performance Analysis of Sleep Mode Operation in IEEE 802.16e Mobile Broadband Wireless Access Systems,” Proceedings of the IEEE VTC 2006 Spring - Vehicular Technology Conference, vol. 3, pp. 1141-1145, Melbourne, Australia, May 2006.
[31]K. Sanghvi, P. K. Jain, A. Lele and D. Das, “Adaptive Waiting Time Threshold Estimation Algorithm for Power Saving in Sleep Mode of IEEE 802.16e,” Proceedings of IEEE COMSWARE 2008 - International Conference on Communication System Software and Middleware, pp. 334-340, Bangalore, India, Jan. 2008.
[32]J. Xiao, S. Zou, B. Ren and S. Cheng, ”An Enhanced Energy Saving Mechanism in IEEE 802.16e,” Proceedings of the IEEE GLOBECOM 2006 - Global Telecommunications Conference, San Francisco, California, USA, Nov. 2006.
[33]D. T. T. Nga, M.-G. Kim and M. Kang, “Delay-guaranteed Energy Saving Algorithm for the Delay-sensitive Applications in IEEE 802.16e Systems,” IEEE Transactions on Consumer Electronics, vol. 53, issue 4, pp. 1339-1347, Nov. 2007.
[34]M. Peng and W. Wang, “An Adaptive Energy Saving Mechanism in the Wireless Packet Access Network,” Proceedings of the IEEE WCNC 2008 - Wireless Communications and Networking Conference, pp. 1536-1540, Las Vegas, USA, Apr. 2008.
[35]D. T. T. Nga, M.-G. Kim and M. Kang, “A Novel Energy Saving Algorithm with Frame Response Delay Constraint in IEEE 802.16e,” IEICE Transactions on Communications, vol. E91-B, no. 4, pp. 1190-1193, Apr. 2008.
[36]N.-H. Lee and S. Bahk, “MAC Sleep Mode Control Considering Downlink Traffic Pattern and Mobility,” Proceedings of the IEEE VTC 2005 Spring - Vehicular Technology Conference, vol. 3, pp. 2076-2080, Stockholm, Sweden, June 2005.
[37]W. J. Jung, H. J. Ki, T.-J. Lee, and M. Y. Chung, “Adaptive Sleep Mode Algorithm in IEEE 802.16e,” Proceedings of Asia-Pacific Conference on Communications 2007, pp. 483-486, Bangkok, Thailand, Oct. 2007.
[38]J. Jang, K. Han, and S. Choi, “Adaptive Power Saving Strategies for IEEE 802.16e Mobile Broadband Wireless Access,” Proceedings of APCC 2006 - Asia-Pacific Conference on Communications, Busan, Republic of Korea, Aug. 2006.
[39]Scalable Network Technologies, http://www.scalable-networks.com/publications/documentation/index.php
[40]Sequans Communications, “Datasheet: SQN1130 System-on-Chip (SOC) for WiMAX Mobile Stations.”
指導教授 周立德(Li-Der Chou) 審核日期 2009-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明