博碩士論文 965401015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:18.117.72.24
姓名 葉文豪(Wen-Hao Yeh)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用福衛三號掩星觀測資料於反演與模擬技術之改進以及電離層Es層活動之分析
(Retrieval and Simulation Techniques for FORMOSAT-3/COSMIC Radio Occultation Data and Applications on Analysis of Ionospheric Sporadic-E Layer)
相關論文
★ 利用缺陷型接地結構之雙頻微型平面倒F天線設計★ 應用於第三代行動電話之倒F天線設計
★ 使用寄生元件之平面式倒F型雙頻天線設計★ 利用寄生元件之平面式倒 F 型三頻天線設計
★ 無線通訊之三頻天線設計★ 無線通訊之雙頻與三頻槽孔型天線設計
★ 應用於智慧型行動裝置之LTE/WWAN多頻單極天線設計★ 應用於行動手持裝置之LTE/WWAN天線設計
★ 利用背腔式槽孔線結構之多頻段天線設計★ 利用缺陷地面共振電路之介質量測技術
★ 應用於藍芽與全球衛星定位系統之電抗性負載型雙頻槽孔天線★ 帶通圓形極化頻率選擇面之設計
★ 啞鈴型缺陷地面之介質量測電路分析與設計★ 雙頻圓極化微波極化器設計
★ 利用微小共振電路之多頻段天線設計★ 應用於X-band平面吸波器之薄型負載電路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 電波掩星(radio occultation)的技術一開始是運用在行星科學上,用於探測行星的大氣並得到其參數剖面。隨著全球定位系統(Global Positioning System, or GPS)的出現,並使用地球低軌道(low Earth orbit)衛星來接收全球定位系統衛星的訊號,使得電波掩星也可用於觀測全球的大氣與電離層。在2006年,台灣發射了六顆地球低軌道衛星用於電波掩星的任務,名為福衛三號星系計畫(Constellation Observing System for Meteorology, Ionosphere and Climate, or FORMOSAT-3/COSMIC)。在本論文中,福衛三號星系計畫的電波掩星資料將被用來發展與改進反演與模擬技術,以及分析電離層散塊E層(sporadic-E layer, or Es layer)的活動。本論文的主要動機在於提出能夠了解在訊號路徑上發生的大氣異常現象,對於所觀測到的訊號以及使用觀測訊號的反掩結果所造成的影響的方法,以便於在未來能夠提高反掩的精確度。本論文內容主要分為三階段來達到此目標: (1) 發展反掩程序來了解電波掩星的反掩過程; (2) 發展路徑覓跡法來了解訊號在大氣中的傳播過程; (3) 使用電離層散塊E層為一個大氣的異常現象的例子,使用所發展的路徑覓跡法來模擬電離層散塊E層對於電波掩星資料振幅的影響,並與實際觀測資料比較。
為了能夠了解大氣異常現象對於反掩結果的影響,首先要先發展電波掩星的反掩程序,本論文的第二章主要是描述自行開發的中央大學電波掩星(National Central University Radio Occultation, or NCURO)反演模式。此模式的主要重點在於經過開環迴路(open loop)之後超額相位的修正技術,以及訊號品質標準的評估。當使用開環迴路時,在地球低軌道衛星所接收到的超額相位會被訊號中的衛星星曆資訊所影響。除此之外,當掩星訊號穿過越低層大氣時,訊號的品質也隨著穿透高度遞減而變差,最終將會因為品質太差而無法反掩,為了解決這個問題,訊號的離散度(degree of unclearness)將被建立為新的品質標準來取代訊號的訊噪比。最後的反掩結果將與美國大氣科學大學聯盟(University Corporation for Atmospheric Resarch, or UCAR)的福衛三號資料分析及檔案中心(COSMIC Data Analysis and Archival Center, or CDAAC)的結果以及屏東探空氣球的觀測結果作比較。
除了要了解大氣異常現象對於反掩結果的影響之外,大氣異常現象對於訊號傳播所造成的影響也需要了解,本論文的第三章描述一個新的三維路徑覓跡法(ray-tracing method),此路徑覓跡法能夠使模擬訊號在大氣中的傳播過程更接近真實的狀況。在這個方法中,包含兩個瞄準模式(aiming algorithm),來確保訊號的路徑的起點與終點能夠落在預定的範圍內。在之前的研究中,路徑覓跡法主要是用來驗證反掩模式以及對資料同化的結果作評估,為了簡化模擬的過程,地球的大氣常常假設為球型對稱,並且確切的全球定位系統與地球低軌道衛星的位置也沒被考慮在內,這兩個假設使電波掩星的模擬不符合真實的狀況。在本論文中的路徑覓跡法中,地球的外型假設為椭球體,大氣結構的部分則是引入歐洲中尺度天氣預報中心(European Centre for Medium-Range Weather Forecasts, or ECMWF)的分析模式,而兩個瞄準模式將用來決定訊號路徑的起始方向,使其起始於預定的全球定位系統衛星的位置,並結束於地球低軌道衛星位置的附近。最後,此路徑覓跡法藉由三個不同的大氣結構來進行測試及驗證: 1. 理想的球形對稱結構; 2. 使用歐洲中尺度天氣預報中心的分析模式並假設地球外型為椭球體; 3. 外加重力波與對流層頂的擾動於歐洲中尺度天氣預報中心的分析模式。使用理想的球形對稱大氣結構時,模擬結果與實際的狀況間的誤差小於0.6%;使用第二種大氣結構時,所有的訊號路徑結束點最後都能夠收斂在預設的範圍內;使用第三種大氣結構時,模擬結果都顯示外加擾動所呈現的特徵。
本論文的第四章以電離層散塊E層為一個大氣異常現象的例子,使用第三章的路徑覓跡法來模擬訊號傳播經過電離層散塊E層之後所接收到的振幅,得到振福與傳播路徑中的電子濃度之間的關係,最後與觀測資料比較。除此之外,並使用從2008年中到2011年中的福衛三號電波掩星資料進行分析。根據模擬結果,訊號經過散塊E層的訊噪比可分為多層型(multiple-layer-type)與單層型(single-layer-type),並且可以由三年的資料得到兩種不同種類的散塊E層的全球性分布,其中四個季節的多層型散塊E層將與從水平風模式(Horizontal Wind Model, or HWM07)所得到的四季風切作比較。除此之外,多層型與單層型散塊E層四季的全球性高度變化相似,但是電子濃度強度的分布不同,而單層型散塊E層的電子濃度強度與E層的全球電子濃度極大值(NmE)分布相似,而E層的全球電子濃度極大值則與太陽的天頂角有直接的關係。
在本論文中,以電離層散塊E層為一個大氣異常現象的例子,使用路徑覓跡法來模擬訊號傳播經過電離層散塊E層時在觀測資料上會看到的現象,並與觀測資料比較,藉此了解對於掩星訊號所造成的影響,在日後藉由反掩模式便可了解對於反掩結果的影響,在未來便可藉由這些資訊發展並改進反掩模式來增加反掩結果的精確度。
摘要(英) Radio occultation (RO) technique, which has been used in planetary science, is a method to obtain the parameter profiles of the atmosphere. With the advent of Global Positioning System (GPS), to observe the global atmosphere and ionosphere of the Earth becomes possible by using low Earth orbit (LEO) satellites to receive the signal of GPS. In 2006, Taiwan launched six LEO satellites as a RO constellation mission, known as Constellation Observing System for Meteorology, Ionosphere and Climate (FORMOSAT-3/COSMIC, or F-3) and the data of F-3 is used in this thesis. The motivation of this thesis is bring up the methods to understand the influence of atmospheric anomaly, which occurs on the signal trajectory, on the observational and retrieval results in order to increase the retrieval accuracy in the future. In order to reach the motivation, three steps are contained in this thesis: (1) A retrieval algorithm is developed to understand the process of the RO data retrieval; (2) A ray tracing model for GPS signal is proposed to understand the signal propagating process in the atmosphere; (3) The ionospheric sporadic-E (Es) layer is used to be an example of atmospheric anomaly to simulate its influence on the amplitude profile by using ray tracing model and compare with the observational data.
In order to know the influence of atmospheric anomaly on the observational and retrieval results, a retrieval algorithm should be developed first. A retrieval algorithm, NCURO (National Central University Radio Occultation), is developed in this thesis to obtain the information of atmospheric parameter profiles. The focus of the algorithm development is on the correction of the excess phase of the signal received with open loop (OL) technique, and the criteria for assessment of the data quality. When the OL is activated, the excess phase of the GPS signal is modulated with navigation messages of satellites. In our algorithms, two methods are incorporated to recover the excess phase. Moreover, as the altitude of the received signal decreases, the quality of the GPS signal generally deteriorates, and eventually the signal is too noisy to be processed. In order to assess the quality of the signal, instead of the signal-to-noise ratio (SNR), the degree of unclearness is defined and used in the algorithm. In this thesis, the algorithm including the phase correction methods and the criteria for the quality assessment will be described. The data retrieval using the algorithm will be compared with those obtained from CDAAC at UCAR and Pingtung radiosonde measurement. Some intermediate results of the NCURO algorithm will also be demonstrated.
Except considering the atmospheric anomaly influenced on the observational and retrieval results, the influence of atmospheric anomaly on the signal propagation should be known. A three-dimensional ray tracing model for GPS signal is proposed to make simulation conform to the realistic RO signal propagation. In the model, two aiming algorithms are developed to ensure the initial and end points of the ray trajectory located in the prescribed region. In past studies, the ray tracing algorithms are often used to support the retrieval algorithms and assess the impact of data assimilation. The ray tracing techniques applied to the RO signal simulation usually assumed a spherically symmetric atmosphere for simplicity. Also, the exact locations of of GPS and LEO satellites are not considered in the simulation. These two assumptions make the simulation unrealistic for the GPS signal propagation in RO technique. In the proposed model, the shape of the Earth is assumed as an ellipse. The information from European Centre for Medium-Range Weather Forecasts (ECMWF) analysis is used to setup the atmosphere in the simulation. Two aiming algorithms are developed to determine the initial propagating direction of GPS signal. The aiming algorithms will also make the simulated signal start from the prescribed GPS satellite position and end in the close vicinity of the LEO satellite position. The proposed model is examined and demonstrated in the designed simulation using three atmospheric structures: the ideal structure of spherical symmetry, the ECMWF analysis with the consideration of the Earth’s flattening, and the artificial perturbation added in ECMWF analysis which allows consideration of gravity waves and the tropopause. For the ideal atmospheric structure, the fractional difference between real and simulated refractivity results is less than 0.6%. For the ECMWF analysis and the consideration of the Earth’s flattening, all the simulated end points are located in the prescribed region. And for the artificial perturbation added in ECMWF, the simulated results show the corresponding characteristics of the artificial perturbation.
The signal propagating through the ionospheric Es layer, which is an example of atmospheric anomaly, is simulated by using the ray tracing model. The relation between the amplitude of RO signals and the electron density profiles of the ionosphere is simulated and compare with the observational data. Furthermore, the RO data recorded in the time period from mid-2008 to mid-2011 are used for the analysis. Based on the simulation results, the multiple-layer-type (MLT) and the single-layer-type (SLT) Es layers which are defined by the shape of SNR, are used to analyze the global distribution of Es layer. The seasonal MLT Es layer is compared with the seasonal wind shear, which is obtained from the Horizontal Wind Model (HWM07). Furthermore, the seasonal MLT Es layer is compared with the SLT Es layer, and the global altitude distributions of MLT and SLT Es layers are similar while the magnitude distributions are different. Unlike the MLT Es layer, the global distribution of the SLT Es layer is similar to the distribution of E region peak electron density (NmE), which is related to the solar zenith angle.
In this thesis, the ionospheric Es layer is an example to show the influence of atmospheric anomaly on RO data by using ray tracing model. And the influence of the atmospheric anomaly on retrieval results also can be anticipated by using the retrieval algorithm. With the information of the influence caused by atmospheric anomaly, the retrieval algorithm can be corrected and developed to retrieve atmospheric parameter profiles with more accuracy in the future.
關鍵字(中) ★ 電波掩星
★ 開環迴路
★ 路徑覓跡法
★ 電離層散塊E層
關鍵字(英) ★ radio occultation
★ open loop
★ ray tracing
★ sporadic-E layer
論文目次 摘要 I
ABSTRACT IV
CONTENTS VI
LIST OF FIGURES VII
CHAPTER 1. INTRODUCTION 1
1-1 NCURO DATA RETRIEVAL ALGORITHM 2
1-2 RAY TRACING TECHNIQUE 3
1-3 AMPLITUDE MORPHOLOGY FOR SPORADIC-E LAYER 5
CHAPTER 2 NCURO DATA RETRIEVAL ALGORITHM 6
2-1 RETRIEVAL ALGORITHM OF GPS RADIO OCCULTATION DATA 6
2-2 OPEN LOOP CORRECTION 9
2-3 CRITERIA OF DATA QUALITY 15
2-4 COMPARISON WITH NCURO, TACC, AND RADIOSONDE DATA 18
2-5 SUMMARY 21
CHAPTER 3. RAY TRACING SIMULATION IN NONSPHERICALLY SYMMETRIC ATMOSPHERE 24
3-1 RAY TRACING TECHNIQUE 24
3-2 RESULTS AND COMPARISON 33
3-3 SUMMARY 40
CHAPTER 4. AMPLITUDE MORPHOLOGY FOR SPORADIC-E LAYERS 43
4-1 RELATION BETWEEN ELECTRON DENSITY AND AMPLITUDE PROFILES 43
4-2 ANALYSIS METHOD 48
4-3 ANALYSIS RESULTS AND DISCUSSIONS 49
4-4 SUMMARY 55
CHAPTER 5. CONCLUSIONS 55
REFERENCE 57
參考文獻 [1] Arras, C., J. Wickert, G. Beyerle, S. Heise, T. Schmidt, and C. Jacobi (2008), A global climatology of ionospheric irregularities derived from GPS radio occultation, Goephys. Res. Lett., 35, L14809, doi: 10.1029/2008GL034158
[2] Arras, C., C. Jacobi, and J. Wickert (2009), Semidiurnal tidal signature in sporadic E occurrence rates derived from GPS radio occultation measurements at higher midlatitudes, Ann. Geophys., 27, 2555-2563, doi: 10.5194/angeo-27-2555-2009
[3] Berman, A.L., and R. Ramos (1980), Pioneer Venus occultation radio science data generation, IEEE Trans. Geosci. Remote Sens., GE-18(1):11-14
[4] Beyerle, G., and K. Hocke (2001), Observation and simulation of direct and reflected GPS signals in radio occultation experiments, Geophys. Res. Lett., 28(9):1895-1898 doi:10.1029/2000GL012530
[5] Born, M., and E. Wolf (1999), Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th (expanded) edition, Cambridge University Press, New York
[6] cdaac-www.cosmic.ucar.edu/cdaac/cgi_bin/fileFormats.cgi?type=gpsBit
[7] cdaac-www.cosmic.ucar.edu/cdaac/cgi_bin/fileFormats.cgi?type=atmPhs
[8] Carrasco, A. J., I. S. Batista, and M. A. Abdu (2007), Simulation of the sporadic E layer response to prereversal associated evening vertical electric field enhancement near dip equator, J. Geophys. Res., 112, A06324, doi:10.1029/2006JA012143
[9] Chiu, T.-C., Y.-A. Liou, W.-H. Yeh, C.-Y. Huang (2008), NCURO Data-Retrieval Algorithm in FORMOSAT-3 GPS Radio-Occultation Mission, IEEE Trans. Geosci. Remote Sens.—A Special Issue on ‘Meteorology, Climate, Ionosphere, Geodesy, and Reflections From the Ocean Surfaces: Studies by Radio Occultation Methods’, 46(11):3395–3405, doi:10.1109/TGRS.2008.2005038.
[10] Cosgrove, R. B., and R. T. Tsunoda (2003), Simulation of the nonlinear evolution of the sporadic-E layer instability in the nighttime midlatitude ionosphere, J. Geophys. Res., 108(A7), 1283, doi:10.1029/2002JA009728
[11] Davies, K. (1990), Ionospheric Radio, Peter Peregrinus Ltd., London, United Kingdom.
[12] Drob, D. P., J. T. Emmert, G. Crowley, J. M. Picone, G. G. Shepherd, W. Skinner, P. Hays, R. J. Niciejewski, M. Larsen, C. Y. She, J. W. Meriwether, G. Hernandez, M. J. Jarvis, D. P. Sipler, C. A. Tepley, M. S O’Brien, J. R. Bowman, Q. Wu, Y. Murayama, S. Kawamura, I. M. Reid, and R. A. Vincent (2008), An empirical model of the Earth’s horizontal wind fields: HWM07, J. Geophys. Res., 113, A12304, doi10.1029/2008JA013668.
[13] Feng, D. D., and M. Herman (1999), “Remote sensing the Earth’s atmosphere using the global positioning system (GPS)—The GPS/MET data analysis,” J. Atmos. Ocean. Technol., 16: 989–1002
[14] Fjeldbo, G., and A. J. Kliore (1971), “The neutral atmosphere of Venus as studied with the Mariner V radio occultation experiments,” Astron. J., 76(2): 123–140
[15] Fong, C.-J., N. Yen, V. Chu, S.-S. Chen, and S. Chi (2007), “Operations challenges from the FORMOSAT-3/COSMIC constellation for global earth weather monitoring,” in Proc. IEEE Aerosp. Conf., Big Sky, MT: 1–14
[16] Fong, C.-J., A. Shiau, T. Lin, T.-C. Kuo, C.-H. Chu, S.-K. Yang, N. Yen, S. S. Chen, C.-Y. Huang, Y.-H. Kuo, Y.-A. Liou, and S. Chi (2008), “Constellation deployment for the FORMOSAT-3/COSMIC mission,” IEEE Trans. Geosci. Remote Sens.—A Special Issue on ‘Meteorology, Climate, Ionosphere, Geodesy, and Reflections From the Ocean Surfaces: Studies by Radio Occultation Methods’, 46(11): 3366–3378
[17] Gorbunov, M. E. (1996), “Three-dimensional satellite refractive tomography of the atmosphere: Numerical simulation,” Radio Sci., 31(1): 95–104
[18] Gorbunov, M. E., and A. S. Gurvich (2002), “Microlab-1 experiment: Multipath effects in the lower troposphere,” J. Geophys. Res., 103(D2): 13819–13826
[19] Gorbunov, M. E. (2002), “Ionospheric correct and statistical optimization of radio occultation data,” Radio Sci., 37(5), 1084
[20] Haldoupis, C., D. Pancheva, W. Singer, C. Meek, and J. MacDougall (2007), An explanation for the seasonal dependence of midlatitude sporadic E layer, J. Geophys. Res., 112, A06315, doi: 10.1029/2007JA012322.
[21] Harris, W. F. (2006), Curvature of ellipsoids and other surfaces, Ophthal. Physiol. Opt., 26:497-501 doi:10.1111/j.1475-1313.2006.00382.x
[22] http://tacc.cwb.gov.tw/cdaac/login/cosmic/
[23] Hocke, K., K. Igarashi, M. Nakamura, P. Wilkinson, J. Wu, A. Pavelyev, and J. Wikert (2001), Global sounding of sporadic E layers by the GPS/MET radio occultation experiment, J. Atmos. Sol. Terr. Phys., 63: 1973-1980, doi: 10.1016/S1364-6826(01)00063-3.
[24] Hofmann-Wellenhof, B., H. Lichtenegger, and J. Collins (2001), Global Positioning System, Theory and Practice, 5th revised ed. New York: Springer-Verlag Wien
[25] Huang, C.-S. and M. C. Kelley (1996), Numerical simulations of gravity wave modulation of midlatitude sporadic E layers, J. Geophys. Res., 101, A11, 24533-24543, doi: 10.1029/96JA02327.
[26] Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shin, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu (1998), The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. Lond. A, 454, 903-995, doi: 10.1098/rspa.1998.0193.
[27] Huang, C.-Y., “Data retrieval of GPS radio occultation,” Ph.D. dissertation, Inst. Space Sci., Nat. Central Univ., Taiwan, 2005. (Thesis advisor: Dr. Yuei-An Liou).
[28] Huang, C.-Y, Y.-H. Kuo. S.-Y. Chen, C.-T. Terng, F.-C. Chien, P.-L. Lin, M.-T. Kueh, S.-H. Chen, M.-J. Yang, C.-J. Wang, A.S.K.A.V. Prasad Rao (2010), Impact of GPS radio occultation data assimilation on regional weather prediction, GPS Solu., 14(1), 25-49, doi: 10.1007/s10291-009-0144-1.
[29] Hwang, C., T. Tseng, T. Lin, C. Fu, and D. Svehla (2006), “Precise orbit determination for FORMOSAT-3/COSMIC and gravity application,” in Proc. AGU Fall Meeting, San Francisco, CA
[30] Igarashi, K., A. Pavelyev, J. Wickert, K. Hocke, and D. Pavelyev (2002), “Application of radio holographic method for observation of altitude variations of the electron density in the mesosphere/lower thermosphere using GPS/MET radio occultation data,” J. Atmos. Sol.-Terr. Phys., 64(8–11): 959–969
[31] Jensen, A. S., M. S. Lohmann, H.-H. Benzon, and A. S. Nielsen (2003), “Full spectrum inversion of radio occultation signals,” Radio Sci., 38(3), 1040
[32] Kelley, M. C. (2009), The Earth’s Ionosphere: Plasma Physics and Electrodynamics, 2nd edition, Academic Press, San Diego.
[33] Kursinski, E. R., G. A. Hajj, J. T. Schofield, S. S. Leroy, and B. Herman (2000), The GPS radio occultation technique, Terr. Atmos. Ocean Sci., 11(1):53-114
[34] Kuo, Y.-H., S. V. Sokilovskiy, R. A. Anthes, and F. Vandenberghe (2000), Assimilation of GPS radio occultation data for numerical weather prediction, Terr. Atmos. Ocean. Sci., 11: 157–186
[35] Kuo, Y.-H., T.-K. Wee, S. Sokolovskiy, C. Rocken, W. Schreiner, D. Hunt, and R. A. Anthes (2004), Inversion and error estimation of GPS radio occultation data, J. Meteorol. Soc. Jpn., 82(1B): 507–531
[36] Leick, A. (2004), GPS Satellite Surveying, 3rd ed. Hoboken, NJ: Wiley
[37] Lie, M.-X., and J.-F. Kiang (2011), A ray tracing technique for ratio occultation, in Proc. iWEN 2011: IEEE International Workshop on Electromagnetics; Applications and Student Innovation, Taipei, Taiwan.
[38] Lindal, G. F., G. E. Wood, H. B. Hotz, D. N. Sweetnam, V. R. Eshleman, and G. L. Tyler (1983), The atmosphere of Titan: An analysis of the Voyager 1 radio occultation easurement, Icarus, 53: 348–363
[39] Lindal, G. F., J. R. Lyons, D. N. Sweetnam, V. R. Eshliman, D. P. Hinson, and G. L. Tyler (1987), The atmosphere of Uranus: Results of radio occultation measurements with Voyager 2, J. Geophys. Res., 92: 14987–15001
[40] Lin, C.-H., J. Y. Liu, T.-W. Fang, P.-Y. Chang, H.-F. Tsai, C. H. Chen, and C.-C. Hsiao (2007), Motions of the equatorial ionization anomaly crests imaged by FORMOSAT-3/COSMIC, Geophys. Res. Lett., 34(19), L19101
[41] Liou, Y.-A., and C.-Y. Huang (2002), Active limb sounding of atmospheric refractivity and dry temperature profiles by GPS/Met occultation, in Proc. COSPAR Colloquia Series, Taipei, Taiwan, 12: 325–328
[42] Liou, Y.-A. (2005), Letter from the guest editor, GPS Solut., 9(2): 85–87
[43] Liou, Y.-A., A. G. Pavelyev, J. Wickert, T. Schmidt, and A. A. Pavelyev (2005), Analysis of atmospheric and ionospheric structures using the GPS/MET and CHAMP radio occultation database: A methodological review, GPS Solutions, 9(2): 122–143 doi: 10.1007/s10291-005-0141-y.
[44] Liou, Y.-A., and A. G. Pavelyev (2006), Simultaneous observations of radio wave phase and intensity variations for locating the plasma layers in the ionosphere, Geophys. Res. Lett., 33, L23102 DOI:10.1029/2006GL027112.
[45] Liou Y.-A., A. G. Pavelyev, J. Wickert, S. F. Liu, and A. A. Pavelyev (2006), Application of GPS radio occultation method for observation of the internal waves in the atmosphere, J. Geophys. Res., 111(D6), D06104.
[46] Liou, Y.-A.,A.G. Pavelyev, S. F. Liu, A. A. Pavelyev, N. Yen, C. Y. Huang, and C. J. Fong (2007), FORMOSAT-3/COSMIC GPS radio occultation mission: Preliminary results, IEEE Trans. Geosci. Remote Sens., 45(11): 3813–3826.
[47] Liou, Y.-A., A.G. Pavelyev, S.S. Matyugov, O.I. Yakovlev, J. Wickert (2010), Radio occultation method for remote sensing of the atmosphere and ionosphere, Intech, Croatia.
[48] Liu, H., and X. Zou (2003), Improvements to a GPS radio occultation ray-tracing model and their impacts on assimilation of bending angle, J. Geophys. Res., 108(D17):4548 doi:10.1029/2002JD003160.
[49] Liu, J. Y., H. F. Tsai, C. H. Lin, M. Kamogawa, Y. I. Chen, C. H. Lin, B. S. Huang, S. B. Yu, and Y. H. Yeh (2010), Coseismic ionospheric disturbances triggered by the Chi‐Chi earthquake, J. Geophys. Res., 115, A08303, doi:10.1029/2009JA014943.
[50] Lusignan, B., G. Modrell, A. Morrison, J. Pomalaza, and S. G. Ungar (1969), Sensing the Earth’s atmosphere with occultation satellites, Proc. IEEE, 57(4):458–467
[51] Mathews, J. D. (1998), Sporadic E: current views and recent progress, J. Atmos. Sol. Terr. Phys., 60, 4, 413, doi: 10.1016/S1364-6826(97)00043-6.
[52] Mehta, S. K., M. V. Ratnam, and B. V. Krishna Murthy (2011), Characteristics of the tropical tropopause over different longitudes, J. Atmos. Sol.-Terr. Phys., 73: 2462-2473 doi: 10.1016/j.jastp.2011.09.006
[53] Miller, K. L. and L. G. Smith (1978), Incoherent scatter radar observations of irregular structure in mid-latitude sporadic E layers, J. Geophys. Res., 83, A8, 3761-3775, doi: 10.1029/JA083iA08p03761.
[54] Mortensen M. D., and P. Hoeg (1998), Inversion of GPS occultation measurements using Fresnel diffraction theory, Geophys. Res. Lett., 25(13): 2441–2444
[55] Narayana Rao D., M. Venkat Ratnam, B. V. Krishna Murthy, V. V. M. Jagannadha Rao, S. K. Mehta, D. Nath, and S. Ghouse Basha (2007), Identification of tropopause using bending angle profile from GPS radio occultation (RO): A radio tropopause, Geophys. Res. Lett., 34(15), L15809
[56] Nicolls, M. J., F. S. Rodrigues, and G. S. Bust (2012), Global observations of E region plasma density morphology and variability, J. Geophys. Res., 117, A01305, doi: 10.1029/2011JA017069.
[57] Pan, J. C., and R. T. Tsunoda (1999), Semidiurnal behavior of quasi-period echoes in the mid-latitude Es region observed with the Chung-Li VHF radar, Goephys. Res. Lett., 26, 16, doi: 10.1029/1999GL900562.
[58] Pavelyev, A. G., Y.-A. Liou, C. Reigber, J. Wickert, K. Igrashi, K. Hocke, and C. Y. Huang (2002), GPS radio holography as a tool for remote sensing of the atmosphere and mesosphere from space, GPS Solut., 6(1/2): 100–108
[59] Pavelyev, A. G., T. Tsuda, K. Igarashi, Y.-A. Liou, and K. Hocke (2003), Wave structures in the electron density profile in the ionospheric D- and E-layers observed by radio holography analysis of the GPS/MET radio occultation data, J. Atmos. Sol.-Terr. Phys., 65(1): 59–70
[60] Pavelyev, A. G., Y. A. Liou, J. Wickert, T. Schmidt, A. A. Pavelyev, and S. F. Liu (2007), Effects of the ionosphere and solar activity on radio occultation signals: Application to CHAllenging Minisatellite Payload satellite observations, J. Geophys. Res., 112(46), A06 326
[61] Pavelyev, A. G., Y. A. Liou, J. Wickert, A. A. Pavelyev, T. Schmidt, K. Igarashi, and S. S. Matyugov (2008), Location of layered structures in the ionosphere and atmosphere by use of GPS occultation data, Adv. Space Res., 42(1): 224–228
[62] Phinney, R. A., and D. L. Anderson (1968), On the radio occultation method for studying planetary atmospheres, J. Geophys. Res., 73(5): 1819–1827
[63] Poli, P.,and J. Joiner (2004), Effects of horizontal gradients on GPS radio occultation observation operators. I: Ray tracing, Q. J. R. Meteorol. Soc., 130:2787-2805 doi:10.1256/qj.03.228
[64] Poli, P., P. Moll, D. Puech, F. Rabier, and S.B. Healy (2009), Quality control error analysis, and Impact assessment of FORMOSAT-3/COSMIC in numerical weather prediction, Terr. Atmos. Ocean. Sci., 20, 101-113, doi: 10.3319/TAO.2008.01.21.02(F3C).
[65] Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (1992), Numerical Recipes, 2ed edition, Cambridge University Press, New York
[66] Sokolovskiy, S. V. (2000), Inversions of radio occultation amplitude data, Radio Sci., 35, 97-105, doi: 10.1029/1999RS002203.
[67] Sokolovskiy, S. (2001), Modeling and inverting radio occultation signals in the moist troposphere, Radio Sci., 36(3):441-458 doi:10.1029/1999RS002273
[68] Sokolovskiy, S. V. (2001), Tracking tropospheric radio occultation signals from low Earth orbit, Radio Sci., 36(3): 483–498
[69] Sokolovskiy, S. (2004), Open loop tracking and inverting GPS L1 radio occultation signals: Simulation study, in Occultations for Probing Atmosphere and Climate, G. Kirchengast, U. Foelsche, and A. K. Steiner, Eds. New York: Springer-Verlag, 39–51
[70] Sokolovskiy, S., Y.-H. Kuo, C. Rocken, W. S. Schreiner, D. Hunt, and R. A. Anthes (2006), Monitoring the atmospheric boundary layer by GPS radio occultation signals recorded in the open-loop mode, Geophys. Res. Lett., 33(12), L12813
[71] Syndergaard, S. (1998), Modeling the impact of the Earth’s oblateness on the retrieval of temperature and pressure profiles from limb sounding, J. Atmos. Sol.-Terr. Phys., 60(2): 171–180
[72] Synbdergaard, S., C. Rocken, W. S. Schreiner, and D. C. Hunt (2006), Ionospheric observations from the FORMOSAT-3/COSMIC GPS occultation experiment: Preliminary results, in Proc. AGU Fall Meeting, San Francisco, CA
[73] Sathishkumar, S., and S. Sridharan (2011), Observations of 2–4 day inertia-gravity waves from the equatorial troposphere to the F region during the sudden stratospheric warming event of 2009, J. Geophys. Res., 116, A12320, doi:10.1029/2011JA017096.
[74] Scherllin-Pirscher, B., C. Deser, S.-P. Ho, C. Chou, W. Randel, and Y.-H. Kuo (2012), The verticaland spatial structure of ENSO in the upper troposphere and lower stratosphere from GPS radio occultation measurements, Geophys. Res. Lett., 39, L20801, doi:10.1029/2012GL053071.
[75] Thayer, G. D. (1974), An improved equation for the radio refractive index of air, Radio Sci., 9(10): 803–807
[76] Tsuda, T., M. Nishida, C. Rocken, and R. H. Ware (2000), A global morphology of gravity wave activity in the stratosphere revealed by the GPS occultation data GPS/MET, J. Geophys. Res., 105(D6): 7257– 7273 doi:10.1029/1999JD901005
[77] Urbina, J., E. Kudeki, S. J. Franke, S. Gonzalez, Q. Zhou, and S. C. Collins (2000), 50 MHz radar observations of mid-latitude E-region irregularities at Camp Santiago, Puerto Rico, Goephys. Res. Lett., 27, 18, doi: 10.1029/2000GL000028.
[78] Vorob’ev, V. V., and T. G. Krasil’nikova (1994), Estimation of the accuracy of the atmospheric refractive index recovery from Doppler shiftmeasurements at frequencies used in the NAVSTAR system, Phys. Atmos. Ocean, 29(5): 602–609
[79] Ware, R., M. Exner, D. Feng, M. Gobunov, K. Hardy, B. Herman, Y. Kuo, T. Meehan, W. Melbourne, C. Rocken, W. Schreiner, S. Sokolovskiy, F. Solheim, X. Zou, R. Anthes, S. Businger, and K. Trenberth (1996), GPS sounding of the atmosphere for low Earth orbit: Preliminary results, Bull. Amer. Meteorol. Soc., 77(1): 19–40
[80] Whitehead, J. D. (1961), The formation of the Sporadic-E layer in the temperate zones, J. Atmos. Terr.Phys., 20, 49-58, doi: 10.1016/0021-9169(61)90097-6.
[81] Whitehead, J. D. (1970), Production and prediction of sporadic E, Rev. Geophys. Space Phys., 8, 65, doi: 10.1029/RG008i001p00065.
[82] Whitehead, J. D. (1989), Recent work on mid-latitude and equatorial sporadic-E, J. Atmos. Terr. Phys., 51, 5, 401, doi: 10.1016/0021-9169(89)90122-0.
[83] Wickert, J., C. Reigber, G. Beyerle, R. Konig, C. Marquardt, T. Schmidt, L. Grunwaldt, R. Galas, T. K. Meehan, W. G. Melbourne, and K. Hocke (2001), Atmosphere sounding by GPS radio occultation: First results from CHAMP, Geophys. Res. Lett., 28(17): 3263–3266
[84] Wickert, J., A. G. Pavelyev, Y. A. Liou, T. Schmidt, C. Reigber, K. Igarashi, A. A. Pavelyev, and S. Matyugov (2004), Amplitude variations in GPS signals as possible indicator of ionospheric structures, Goephys. Res. Lett., 31, L24801, doi: 10.1029/2004GL020607.
[85] Wickert, J., G. Michalak, T. Schmidt, G. Beyerle, C. Z. Cheng, S. B. Healy, S. Heise, C. Y. Huang, N. Jakowski, W. Kohler, C. Mayer, D. Offiler, E. Ozawa, A. G. Pavelyev, M. Rothacher, B. Tapley, and C. Arras (2009), GPS radio occultation: Results from CHAMP, GRACE and FORMOSAT-3/COSMIC, Terr. Atmos. Ocean. Sci., 20, 35-50, doi: 10.3319/TAO.2007.12.26.01(F3C).
[86] Woo, R., and A. Ishimaru (1974), Effects of turbulence in a planetary atmosphere on radio occultation, IEEE Trans. Antennas Propagat., AP-22(4):566-573
[87] Wu, D. L., C. O. Ao, G. A. Hajj, M. de la Torre Juarez, and A. J. Mannucci (2005), Sporadic E morphology from GPS-CHAMP radio occultation, J. Geophys. Res., 110, A01306, doi: 10.1029/2004JA010701.
[88] Yakovlev, O. I., J. Wickert, A. G. Pavelyev, S. S. Matyugov, and V. A. Anufriev (2008), Sporadic structures in equatorial ionosphere as revealed from GPS occultation data, Acta Astron., 63, 1350-1359, doi: 10.1016/j.actaastro.2008.05.023.
[89] Yakovlev, O. I., J. Wickert, A. G. Pavelyev, V. A. Anufriev, and G. P. Cherkunova (2010), Results of radio occultation measurement of polar ionosphere at links satellite-to-satellite during strong flare solar activity, Acta Astron., 67, 315-323, doi: 10.1016/j.actaastro.2010.02.017.
[90] Yeh, W.-H., T.-C. Chiu, Y.-A. Liou, M.-Q. Chen, and C.-Y. Huang, Ray tracing simulation in nonspherically symmetric atmosphere for GPS radio occultation, submitted to GPS Solu..
[91] Yunck, T. P., C.-H. Liu, and R. Ware (2000), A history of GPS sounding, Terr. Atmos. Ocean. Sci., 11(1): 1–20
[92] Zeng, Z., and S. Sokolovskiy (2010), Effect of sporadic E cloud on GPS radio occultation signal, Goephys. Res. Lett., 37, L18817, doi: 10.1029/2010GL044561.
[93] Zhang, X, Y. Liu, B. Wang, and Z. Ji (2004), Parallel computing of a variational data assimilation model for GPS/MET observation using the ray-tracing method, Adv. Atmos. Sci., 21(2):220-226 doi:10.1007/BF02915708
[94] Ziemer, R. E., and W. H. Tranter (2001), Principles of Communications: Systems, Modulation, and Noise, 5th ed. Boston, MA: Houghton Mifflin
[95] Zou, X., F. Vandenberghe, B. Wang, M. E. Gorbunov, Y. H. Kuo, S. Sokolovskiy, J. G. Sela, and R. A. Anthes (1999), A ray-tracing operator and its adjoint for the use of GPS/MET refraction angle measurements, J. Geophys. Res., 104(D18):22301-22318 doi:10.1029/1999JD900450
指導教授 丘增杰、劉說安
(Tsen-Chieh Chiu、Yuei-An Liou)
審核日期 2013-1-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明