博碩士論文 965401017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:18.222.32.191
姓名 劉欣宇(Hsin-yu Liu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 人型機器人之穩定動作設計與控制
(Stable Motions Design and Control in Humanoid Robot)
相關論文
★ 直接甲醇燃料電池混合供電系統之控制研究★ 利用折射率檢測法在水耕植物之水質檢測研究
★ DSP主控之模型車自動導控系統★ 旋轉式倒單擺動作控制之再設計
★ 高速公路上下匝道燈號之模糊控制決策★ 模糊集合之模糊度探討
★ 雙質量彈簧連結系統運動控制性能之再改良★ 桌上曲棍球之影像視覺系統
★ 桌上曲棍球之機器人攻防控制★ 模型直昇機姿態控制
★ 模糊控制系統的穩定性分析及設計★ 門禁監控即時辨識系統
★ 桌上曲棍球:人與機械手對打★ 麻將牌辨識系統
★ 相關誤差神經網路之應用於輻射量測植被和土壤含水量★ 三節式機器人之站立控制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文提出了人型機器人的穩定動作設計與動態平衡控制,並應用於實際的機器人上以驗證提出方法之效能。在人型機器人的穩定動作設計方面,首先以模擬的方式建立人型機器人的多連桿系統,接著隨時計算機器人在動作時的零力距點(zero moment point)位置,並修正機器人腳踝的角度以確保其在連續動作時其零力距點皆落於穩定範圍內,最後將調整過的機器人動作套用於實際人型機器人上以驗證其穩定性。在人型機器人的動態平衡控制方面分為兩個階段,首先以設置於機器人腳底的壓力感測器為輸入,以腳踝模糊控制器調整機器人的腳踝關節,再次確保機器人在動作時的穩定。接下來配合感測上半身傾斜角度,再以腳踝-腰部模糊控制器同時控制機器人的腳踝與腰部關節以增加其抵抗外力的能力。最後提出三種實驗,讓機器人抵抗三種不同類型的外力,分別為抵抗槌子的推擠、站立於雙軸轉動的平台以及在蹺蹺板上行走,以測試控制器施於機器人的強健穩定性。而實驗數據顯示,所提出的模糊制器確實能夠大幅提升機器人對於外力抵抗的能力。總而言之,此論文對於小型人型機器人提供了一套完整的動作穩定方法,主要以模擬的方式先調整機器人的動作,並利用感測器回授及控制器設計,使機器人能夠即時的達成平衡控制,進而增加其抵抗外力的能力。最後再以實驗數據呈現出控制器所產生的效能。
摘要(英) In this dissertation, the methods of stable motion design and balance control for a humanoid robot are proposed and the effectiveness of the methods is demonstrated by a practical humanoid robot. In the stable motion design, the concepts of multilink system and ZMP (Zero Moment Point) are applied to construct a virtual model of the humanoid robot for checking the ZMP positions of the robot’s motions. Subsequently, the stability of the virtual motions is checked by adjusting the angle of robot’s ankle and those stable motions are realized by a practical humanoid robot. In the balance control of the humanoid robot, the proposed method includes real-time balance control for the humanoid robot to imitate human motions and resist external uncertain factors. Regarding the real-time balance control for imitating human motions, the force sensors are installed under the soles of the robot and the fuzzy controller is applied to adjust the robot’s ankle joint in real time for increasing the stability of the motions. Regarding the real-time balance control for resisting external uncertain factors, the force sensor module and IMU (inertial measurement unit) sensor are used as the stability indexes and they are the inputs of four fuzzy controllers. By applying the fuzz controllers, the waist and ankle joints of the humanoid robot are adjusted simultaneously for resisting environmental disturbances. In the experiment, the humanoid robot is required to achieve three tasks which are resisting a thrust force from a hammer, standing on a two-axis inclinable platform and walking on a seesaw. The experimental data demonstrates that the proposed fuzzy controllers can indeed increase the stability of the humanoid robot. In summary, this dissertation proposes serial methods for stabilizing the motions of the humanoid robot. The robot’s motions are stabilized by the simulation method and then performed by a practical humanoid robot. Based on the sensor feedbacks and the proposed fuzzy controllers, the stability of the robot is checked again during the motions implementation. The proposed methods are successfully verified by the practical experiments.
關鍵字(中) ★ 動作設計
★ 人型機器人
★ 模糊控制
關鍵字(英) ★ motion design
★ fuzzy control
★ humanoid robot
論文目次 摘要 I
Abstract II
誌謝 III
List of Figures VI
List of Tables X
Chapter 1Introduction 1
1.1 Background and Motivation 1
1.2 Review of Previous Works 2
1.3 Organization and Main Tasks 5
Chapter 2 Stable Motions Design for a Humanoid Robot 7
2.1 Introduction 7
2.2 Overview of the System Structure 8
2.2.1 Personal Computer 9
2.2.2 AX-12 Motor 9
2.3 Some Main Concepts 10
2.3.1 Multi-link System 10
2.3.2 The Concept of Zero Moment Point 12
2.3.3 The Scheme of the Ankle Joint Adjuster 12
2.4 Modification of the Motion Trajectory Function 15
2.4.1 Linear Interpolation 15
2.4.2 Polynomial Regression 16
2.5 Simulation and Experiment Results 17
2.5.1 Simulation of the Humanoid Robot 17
2.5.2 Experiment on a Real Humanoid Robot 18
2.6 Summary 19
Chapter 3 Real-Time Balance Control of the Humanoid Robot for Human Motion Imitation 20
3.1 Introduction 20
3.2 Description for the Hardware System 21
3.2.1 The Humanoid Robot 21
3.2.2 Force Sensor Module 22
3.3 Motion Data Modification 23
3.3.1 Off-line Fuzzy ZMP Adjuster 25
3.4 Ankle Angle Adjustment 28
3.4.1 CoP Calculation 28
3.4.2 Real-time Fuzzy CoP Compensator 29
3.5 Experiment Results 32
3.6 Conclusion 37
Chapter 4 Real-time Balance Control of the Humanoid Robot for Resisting Various Environment Disturbances 38
4.1 Introduction 38
4.2 Description for the Hardware Structure 39
4.2.1 The CU-robot 39
4.2.2 The RoBoard RB-100 Computer 40
4.2.3 The Razor IMU Module 41
4.2.4 The Force Sensor Module 42
4.3 Walking Posture of The CU-Robot 42
4.4 Reactions for Resisting External Disturbances 44
4.4.1 Task I: Resisting the External Thrust from a Hammer 46
4.4.2 Task II: Standing on an Inclinable X-Y Platform 46
4.4.3 Task III: Walking on a Seesaw 46
4.5 Fuzzy Controller Design for The CU-Robot 47
4.5.1 Previous Works 48
4.5.2 The Fuzzy Controllers for Ankle and Waist Adjusting 49
4.6 Experiment Results 57
4.6.1 Resisting an External Thrust from a Hammer 57
4.6.2 Standing on an Iclinable X-Y Platform 63
4.6.3 Walk on a Seesaw 68
4.7 Conclusion 73
Chapter 5 Conclusion and Future Works 74
5.1 Conclusion 74
5.2 Future Works 75
Reference 76
參考文獻 [1] J. H. Park, “Impedance control for biped robot locomotion,” IEEE Transactions on Robotics and Automation Systems, vol. 17, no. 6, pp. 870-882, Dec. 2001.
[2] C. Zhu, M. Okamura, A. Kawamura, and Y. Tomizawa, “Experimental approach for high speed walking of biped robot MARI-1,” in proceeding of 2004 Advanced Motion Control Conference, Kawasaki, Japan, 2004, pp. 427-432.
[3] S. Nakaoka, A. Nakazawa, F. Kanehiro, K. Kaneko, M. Morisawa, and K. Ikeuchi, “Task model of lower body motion for a biped humanoid robot to imitate human dances?” in proceeding of International Conference on Intelligent Robots and Systems, Alberta, Canada, 2005, pp. 3157-3162.
[4] X. J. Zhao, O. Huang, Z. Peng, and K. Li, “Kinematics mapping and similarity evaluation of humanoid motion based on human motion capture,” in proceeding of International Conference on Intelligent Robots and Systems, Sendai, Japan, 2004, vol. 1, pp. 840-845.
[5] K. Erbatur, A. Okazaki, K. Obiya, T. Takahashi, and A. Kawamura, “A study on the zero moment point measurement for biped walking robots,” in proceeding of 7th international Workshop on Advanced Motion Control, Maribor, Slovenia, 2002, pp. 431-436.
[6] J. H. Park, and H. Chung, “ZMP compensation by online trajectory generation for biped robots,” in proceeding of IEEE International Conference on Systems, Man and, Cybernetics, Tokyo, Japan, 1999, vol. 4, pp. 960-965.
[7] J. P. Ferreira, M. M. Crisostomo, and A. P. Coimbra, “Human gait acquisition and characterization,” IEEE Transactions on Instrumentation and Measurement, vol. 58, no. 9, pp. 2979-2988, Sep. 2009.
[8] J. Or, “A hybrid cpg–zmp controller for the real-time balance of a simulated flexible spine humanoid robot,” IEEE Transactions on Systems, Man and, Cybernetics Part C-Application, vol. 39, no.5, pp. 547-560, Sep. 2009.
[9] J.P. Ferreira, M. M. Crisostomo, A. P. Coimbra, “SVR versus neural-fuzzy network controllers for the sagittal balance of a biped robot,” IEEE Transactions on Neural Networks, vol. 20, no. 12, pp. 1885-1897, Dec. 2009.
[10] F. Kanehiro, M. Inaba, and H. Inoue, “Development of a two-armed bipedal robot that can walk and carry objects,” in proceeding of International Conference on Intelligent Robots and Systems, Osaka, Japan, 1996, vol.1, pp. 23–28.
[11] F. R. Sias Jr. and Y. F. Zheng, “How many degrees-of-freedom does a biped need?” in proceeding of International Conference on Intelligent Robots and Systems, Tsuchiura, Japan, 1990, vol. 1, pp. 297–302.
[12] J. G. Juang, “Fuzzy neural network approaches for robotic gait synthesis,” IEEE Transactions on Systems, Ma and, Cybernetics Part B- Cybernetics, vol. 30, no. 4, pp. 594-601, Aug. 2000.
[13] C. Fu and K. Chen, “Gait synthesis and sensory control of stair climbing for a humanoid robot,” IEEE Transactions on Industrial Electronics, vol. 55, pp. 2111-2120, May 2008.
[14] H. Y. Liu, W. J. Wang, and R. J. Wang, “A course in simulation and demonstration of humanoid robot motion,” IEEE Transactions on Education, vol. 54, no. 2, May 2011.
[15] H. Y. Liu, W. J. Wang, and R. J. Wang, C. W. Tung, P. J. Wang, and I P. Chang, “Image recognition and force measurement application in the humanoid Robot imitation,” IEEE Transactions on Instrumentation and Measurement, vol. 61, no. 1, Jan. 2012.
[16] W. J. Wang, H. Y. Liu, R. J. Wang, and C. H. Chang, “Real-time robust balance for a humanoid robot in unstable environments,” Robotics and Autonomous Systems, submitted.
[17] H. Y. Liu, R. J. Wang, and W. J. Wang, “Posture generation of a humanoid robot based on fuzzy approximation,” in proceeding of 2009 National Symposium on System Science and Engineering, 2009.
[18] C. Genci, N. Yasuo, B. Leonard, and M. Kazuhitsa, “Real time gait generation for autonomous humanoid robots: a case study for walking,” Robotics and Autonomous Systems, pp. 107-116, Feb. 2003.
[19] J. S. Kong, E. H. Lee, B. H. Lee, and J. G. Kim, “Study on the real-time walking control of a humanoid robot,” International Journal of Control, Automation, and Systems, vol. 6, no. 4, pp. 551-558, Aug. 2008.
[20] E. Taskıran, M. Yılmaz, O. Koca, U. Seven, and K. Erbatur, “Trajectory generation with natural ZMP references for the biped walking robot SURALP,” in proceeding of 2010 IEEE International Conference on Robotics and Automations, Alaska, USA, 2010, pp. 4237–4242.
[21] J. H. Park, “Fuzzy-logic zero-moment-point trajectory generation for reduced trunk motions of biped robots,” Fuzzy sets and systems, pp.189-203, June 2003.
[22] H. Y. Liu, C. H. Chang, R. J. Wang, and W. J. Wang, “A study on balance control of a humanoid robot,” in proceeding of 2011 Asian Fuzzy System Society, Indonesia, 2011.
[23] T. H. Cheng, H. P. Huang, J. L. Yan, and Y. W. Chao, “Development of a walking stabilizing controller for humanoid robots,” in proceeding of 2010 IEEE-RAS International Conference on Humanoid Robots, TN, USA, 2010, pp. 40-45.
[24] K. Loffler, M. Gienger, F. Pfeiffer, and H. Ulbrich, “Sensors and control concept of a biped robot,” IEEE Transactions on Industrial Electronics, vol. 51, no. 5, pp. 972-980, Oct. 2004.
[25] J.P. Ferreira, M. M. Crisostomo, A. P. Coimbra, and B. Ribeiro, “Control of a biped robot with support vector regression in sagittal plane,” IEEE Transactions on Instrumentation and Measurement, vol. 58, no. 9, pp. 3167-3176, Sept. 2009.
[26] Q. Huang, and Y. Nakamura, “Sensory reflex control for humanoid walking,” IEEE Transactions on Robotics and Automation, vol. 21, issue 5, pp. 977–984, 2005.
[27] K. Suwanratchatamanee, M. Matsumoto, and S. Hashimoto, “Haptic sensing foot system for humanoid robot and ground recognition with one leg balance,” IEEE Transactions on Industrial Electronics, vol. 58, issue 5, pp. 3174-3186, Aug. 2011.
[28] Y. F. Zheng and J. Shen, “Gait synthesis for the SD-2 biped robot to climb sloping surface,” IEEE Transactions on Robotics and Automation, vol. 6, no. 1, pp. 86-96, Feb. 1990.
[29] U. Seven, T. Akbas, K. C. Fidan, M.n Yilmaz, and K. Erbatur, “Humanoid robot walking control on inclined planes,” in proceeding of the 2011 IEEE International Conference on Mechatronics, Istanbul, Turkey, 2011, pp. 875-880.
[30] C. L. Shih and C. J. Chiou, “The motion control of a statically stable biped robot on an uneven floor,” IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, vol. 28, no. 2, pp. 244-249, Apr. 1998.
[31] N. Motoi, M. Ikebe, and K. Ohnishi, “Real-Time gait planning for pushing motion of humanoid robot,” IEEE Transactions on Industrial Informatics, vol. 3, no. 2, pp. 154-163, May 2007.
[32] K. Suwanratchatamanee, M. Matsumoto, and S. Hashimoto, “Walking on the slopes with tactile sensing system for humanoid robot,” in proceeding of International Conference on Control, Automation and Systems, Gyeonggi-do, Korea, 2010, pp. 350-355.
[33] C. S. Lee, “Robot arm kinematics, dynamics, and control,” IEEE Transactions on Computers, vol. 15, pp. 62-80, Dec. 1982.
[34] H. Y. Liu, K. H. Chao, W. J. Wang, and C. H. Chang, C. W. Tung, P. J. Wang and I. P. Chang, “Real time recognition and display for human motions,” in proceeding of 2009 CACS International Automatic Control Conference, 2009.
[35] L. X. Wang, A course in fuzzy systems and control, United States: Prentice Hall, 1997.
[36] S. Kim, C. Kim, and B. J. You, "Whole-body motion imitation using human modeling," in proceeding of IEEE International Conference on Robotics and Biomimetics, Bangkok, Thaland, 2009, pp. 596-601.
[37] L. Tanco, J. P. Bandera, R. Marfil, and F. Sandoval, “Real-time human motion analysis for human-robot interaction,” in proceeding of International Conference on Intelligent Robots and Systems, Alberta, Canada, 2005, pp. 1402-1407.
[38] K. Kosuge, T. Hayashi, Y. Hirata, and R. Tobiyama, “Dance partner robot - Ms DanceR,” in proceeding of International Conference on Intelligent Robots and System, Las Vegas, NV, 2003, vol.3, pp. 3459-3464.
[39] C. Ott, D. Lee, and Y. Nakamura, "Motion capture based human motion recognition and imitation by direct marker control," in proceeding of 8th IEEE-RAS International Conference on Humanoid Robot, Daejeon, Korea, 2008, pp. 399-405.
[40] M. Do, P. Azad, T. Asfour, and R. Dillmann, "Imitation of human motion on a humanoid robot using non-linear optimization," in proceeding of 8th IEEE-RAS International Conference on Humanoid Robot, Daejeon, Korea, 2008, pp. 545-552.
[41] D. Lee, H. Kunori, and Y. Nakamura, “Association of whole body motion from tool knowledge for humanoid robot,” in proceeding of 8th IEEE-RAS International Conference on Humanoid Robot, Nice, France, 2008, pp. 2867-2873.
[42] D. Kim, S.-J. Seo, and G.-T. Park, “Zero-moment point trajectory modelling of a biped walking robot using an adaptive neuro-fuzzy system,” in proceeding of Control Theory and Applications, 2005, vol. 152, no. 4, pp. 411-426.
[43] T. H. Li, Y. T. Su, S. W. Lai, and J. J. Hu, “Walking motion generation, synthesis, and control for biped robot by using PGRL, LPI, and fuzzy logic,” IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, vol. 41, no. 3, pp. 736-748, June 2011.
[44] Y. Choi, D. Kim, Y. Oh, and B. J. You, “Posture/walking control for humanoid robot based on kinematic resolution of CoM jacobian with embedded motion,” IEEE Transactions on Robotics, vol. 23, no. 6, pp. 1285-1293, Dec. 2007.
[45] T. Wanga, C. Chevallereau, and C. F. Rengifo, “Walking and steering control for a 3D biped robot considering ground contact and stability,” Robotics and Autonomous Systems, pp. 962-977, Apr. 2012.
[46] X. Chen and Z. Li, “Walking pattern design and feedback control for humanoid robot” in proceeding of the 7th World Congress on Intelligent Control and Automation, Chongqng, China, 2008, pp. 6590-6595.
[47] J. Or, “A hybrid CPG_ZMP control system for stable walking of a simulated flexible spine humanoid robot,” Neural Networks, pp. 452-460, 2010.
[48] R. C. Luo and Y. H. Pu, C. H. Chen, J. R. Chang and C. Y. Li, “Design and implementation of humanoid biped walking robot mechanism towards natural walking,” in proceeding of the 2011 IEEE International Conference on Robotics and Biomimetics, Phuket, Thailand, 2011, pp. 1165-1170.
[49] F. Plestan, J. W. Grizzle, and E. R. Westervelt, “Stable walking of a 7-DOF biped robot,” IEEE Transactions on Robotics and Automation, vol. 19, no. 4, pp. 653-668, 2003.
[50] AX-12 motor retrieved May 28, 2012, from http://www.trossenrobotics.com/ bioloid-robot- system.aspx.
[51] RoBoard RB-100 retrieved May 28, 2012, from http://www.roboard.com/RB-10 0 .htm.
[52] Force sensor retrieved May 28, 2012, from http://www.robotsfx.com/robot/AS_F S.html
[53] IMU sensor retrieved May 28, 2012, from http://www.sparkfun.com/products /9623.
指導教授 王文俊(Wen-june Wang) 審核日期 2012-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明