博碩士論文 973202011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.12.148.180
姓名 林俊榮(Jing-Long Lin)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 以力法為分析工具之結構離散輕量化設計效率的探討
(On the Computational Efficiency of Using Force Method in Discrete Structural Optimization)
相關論文
★ PSO-DE混合式搜尋法應用於結構最佳化設計的研究★ 考量垂直向效應之多項式摩擦單擺支承之分析與設計
★ 以整合力法為分析工具之結構離散輕量化設計效率的探討★ 最佳化設計於結構被動控制之應用
★ 多項式摩擦單擺支承之二維動力分析與最佳參數研究★ 構件考慮剛域之向量式有限元素分析研究
★ 矩形鋼管混凝土考慮局部挫屈與二次彎矩效應之軸壓-彎矩互制曲線研究★ 橋梁多支承輸入近斷層強地動極限破壞分析
★ 穩健設計於結構被動控制之應用★ 二維結構與固體動力分析程式之視窗介面的開發
★ 以離心機實驗與隱式動力有限元素法模擬逆斷層滑動★ 以離心模型實驗探討逆斷層錯動下群樁基礎與土壤的互制反應
★ 九二一地震大里奇蹟社區倒塌原因之探討★ 群樁基礎之最低價設計
★ 應用遺傳演算法於群樁基礎低價化設計★ 應用Discrete Lagrangian Method於群樁基礎低價化設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文主要是以矩陣力法配合離散拉格朗日法(Discrete Lagrangian Method, DLM)進行離散結構最佳化設計,並與位移法比較設計所需時間,藉以探討其對最佳化整體計算效率改善情況。一般的最佳化設計研究多數以位移法分析為主,位移法分析時所需求解的方程式數量是系統自由度的數量,而力法所需要求解的方程式數量則是系統贅餘度數,因此當超靜定結構的贅餘度數小於系統自由度數量的情況下,其所需要的分析時間會低於位移法所需的時間;此外,力法分析中的力平衡矩陣不會變更,不需重覆找出對應於贅力的平衡矩陣和基元靜定結構的平衡矩陣,因此應用力法於需要反覆求解之的最佳化問題時,比位移法更具優勢。DLM為一種鄰點搜尋法,其具備非常強健之搜尋能力,由過去的研究結果顯示此法求解能力極佳,本文同時考慮合向量移動策略來改善DLM求解大型結構的效能,並能加快DLM的求解效率。本文最後將以數個傳統結構離散輕量化設計例來展示以力法作為結構分析工具的優點,並比較力法和位移法所需的計算時間。
摘要(英) In this paper, the discrete structural optimization problem solved by using discrete Lagrangian method (DLM) in conjunction with force method of analysis is presented. DLM belongs to the neighborhood searching methods. In the past, the analysis module built in the DLM algorithm is based on the displacement approach. To improve the searching efficiency of the method, the force method of analysis will be considered in this study. Most structural optimization algorithms published in the literature were developed based on the displacement method of analysis which is incorporated inside the optimization routine. In the displacement method, the number of equations needed to be solved is the number of degrees of freedom for the system whereas that for the force method is the number of redundant forces. If the number of degrees of freedom is greater than for the number of redundant in a structural system, the displacement method requires much more computer time than the force method does. Furthermore, the equilibrium matrix in the force method does not change in the redesign process making this method attractive and efficient. The DLM (Discrete Lagrangian Method) is an adaptation of usual Lagrange multiplier method to structural optimization problems using available sections have shown that it is robust and validate. To enhance the efficiency and robustness of the search for optimal larger structural design problems, an enhancing strategy for accelerating the search speed of the DLM. The advantage of using force method and the efficiency improvement of the force method will be discussed for discrete sizing optimization problems of structures.
關鍵字(中) ★ 結構輕量化設計
★ 力法
關鍵字(英) ★ Force Method
★ Structural Optimization
論文目次 中文摘要 ....................................... i
英文摘要 ....................................... iii
致謝 ........................................... v
目錄 ........................................... vii
表目錄 ......................................... xiii圖目錄 ......................................... xvii
第一章 緒論 ................................... 1
1.1 研究動機與目的 ............................................. 1
1.2 文獻回顧 .................................. 3
1.2.1 力法 .................................... 5
1.2.2 離散拉格朗日演法......................... 7
1.3 研究方法與內容 ............................ 8
第二章 矩陣力法分析 ........................... 10
2.1 前言 ...................................... 10
2.2 矩陣力法分析程序 .......................... 11
2.2.1 建立內外力平衡矩陣[B] ................... 12
2.2.2 利用[B]矩陣選取贅力 ..................... 24
2.2.3 計算力轉換矩陣 .......................... 26
2.2.4 求解贅力 ................................ 27
2.2.5 計算桿件內力和節點自由度位移 ............ 29
2.3 空間構架算例 .............................. 30
第三章 DLM演算法 .............................. 44
3.1 離散最佳化問題之數學模式 .................. 44
3.2 DLM理論回顧 ............................... 45
3.2.1 加權離散拉格朗日函數 .................... 45
3.2.2 鄰點 .................................... 46
3.2.3 離散梯度 ................................ 47
3.2.4 離散鞍點 ................................ 48
3.2.5 收斂準則與一階搜尋公式 .................. 49
3.2.6 合向量移動策略 .......................... 53
3.2.7 DLM搜尋程序 ............................. 56
第四章 數值計算例 ............................. 59
4.1 結構離散最佳化問題之目標函數與束制條件 .... 60
4.2 數值算例設計結果 .......................... 62
4.2.1 10桿平面桁架............................. 63
4.2.2 25桿空間桁架 ............................ 67
4.2.3 22桿平面桁架 ............................
4.2.4 36桿空間桁架 ............................ 75
4.2.5 72桿空間桁架 ............................ 78
4.2.6 132桿空間桁架 ........................... 80
4.2.7 160桿空間桁架 ........................... 84
4.2.8 200桿平面桁架 ........................... 88
4.2.9 單跨單層平面構架 ........................ 93
4.2.10 單跨雙層平面構架 ........................ 96
4.2.11 雙跨五層平面構架 ........................ 98
4.2.12 單跨八層平面構架 ........................ 101
第五章 結論與建議 ............................. 105
5.1 結論 ...................................... 105
5.2 未來研究方向 .............................. 106
參考文獻 ....................................... 108
附錄A 10桿平面桁架細部資料及設計結果 .......... 116
A.1 細部設計資料 .............................. 116
A.2 DLM-f設計結果 ............................. 117
附錄B 25桿空間桁架細部資料及設計結果 .......... 118
B.1 細部設計資料 .............................. 118
B.2 DLM-f設計結果 ............................. 120
附錄C 22桿平面桁架細部資料及設計結果 .......... 122
C.1 細部設計資料 .............................. 122
C.2 DLM-f設計結果 ............................. 124
附錄D 36桿空間桁架細部資料及設計結果 .......... 126
D.1 細部設計資料 .............................. 126
D.2 DLM-f設計結果 ............................. 128
附錄E 72桿空間桁架細部資料及設計結果 .......... 130
E.1 細部設計資料 .............................. 130
E.2 DLM-f設計結果 ............................. 132
附錄F 132桿穹頂桁架細部資料及設計結果 ......... 136
F.1 細部設計資料 .............................. 136
F.2 DLM-f設計結果 ............................. 140
附錄G 160桿空間桁架細部資料及設計結果 ......... 150
G.1 細部設計資料 .............................. 150
G.2 DLM-f設計結果 ............................. 155
附錄H 200桿平面桁架細部資料及設計結果 ......... 167
H.1 細部設計資料 .............................. 167
H.2 DLM-f設計結果 ............................. 170
附錄I 單跨單層平面構架細部資料及設計結果 ...... 178
I.1 細部設計資料 .............................. 178
I.2 DLM-f設計結果 ............................. 179
附錄J 單跨雙層平面構架細部資料及設計結果 ...... 180
J.1 細部設計資料 .............................. 180
J.2 DLM-f設計結果 ............................. 182
附錄K 雙跨五層平面構架細部資料及設計結果 ...... 184
K.1 細部設計資料 .............................. 184
K.2 DLM-f設計結果 ............................. 附錄L 單跨八層平面構架細部資料及設計結果 ...... 190
L.1 細部設計資料 .............................. 190
L.2 DLM-f設計結果 ............................. 198
參考文獻 參考文獻
1. Arora, J. S., and Govil, A. K., “An Efficient Method for Optimal Structural Design by Substructuring,” Computers and Structures, Vol. 7, No.4?B, pp. 507?515, 1977.
2. Arora, J. S., Introduction to Optimum Design, McGraw?Hill, 1989.
3. Arora, J. S., Huang, M.W., and Hsieh, C. C., “Methods for Optimization of Nonlinear Problems with Discrete Variables: A Review,” Structural Optimization, Vol. 8, pp. 69?85, 1994.
4. Cai, J., and Thierauf , G., “Discrete Optimization of Structures Using an Improved Penalty Function Method,” Engineering Optimization, Vol. 21, pp. 293?306, 1993.
5. Cai, J., and Thierauf, G., “A Parallel Evolution Strategy for Solving Discrete Structural Optimization,” In: Topping, B. H. V., and Papadrakakis, M., Advances in parallel and vector processing for structural mechanics, Edinburgh: Civil?Comp Limited, pp. 239?244, 1996.
6. Camp, C., Pezeshk, S., and Cao, G., “Optimized Design of Two?Dimensional Structures Using a Genetic Algorithm,” Journal of Structural Engineering, ASCE, Vol. 124, No. 5, pp. 551?559, 1998.
7. Chai, S., and Sun, H. C., “A Relative Difference Quotient Algorithm for Discrete Optimization,” Structural Optimization, Vol. 12, pp. 46?56, 1996.
8. Coello, C. A., Rudnick, M., and Christiansen, A. D., “Using Genetic Algorithms for Optimal Design of Trusses,” Sixth International Conference on Tools with Artifical Intelligence, IEEE, pp. 88?94, 1994.
9. Duan, M. Z., “An Improved Templeman’s Algorithm for the Optimum Design of Trusses with Discrete Member Sizes,” Engineering Optimization, Vol. 9, pp. 303?312, 1986.
10. Erbatur, F., Hasancebi, O., Tutuncu, I., and Kilic, H., “Optimal Design of Planar and Space Structures with Genetic Algorithms,” Computers and Structures, Vol. 75, pp. 209?224, 2000.
11. Galante, M., “Genetic Algorithms as an Approach to Optimize Real?World Trusses,” International Journal for Numerical Methods in Engineering, Vol. 39, pp. 361?382, 1996.
12. Garlinkel, R., and Nemhauser, G., Integer Programming, John Wiley and Sons, New York, N. Y, 1992.
13. Geman, S., and Geman, D., “Stochastic Relaxation, Gibbs Distributions and the Bayesian Restoration of Images,” Transactions on Pattern Analysis and Machine Intelligence, IEEE, Vol. 6, pp. 721?741, 1984.
14. Groenwold, A. A., and Stander, N., “Optimal Discrete Sizing of Truss Structure Subject to Buckling Constraints,” Structural Optimization, Vol. 14, pp. 71?????????
15. Groenwold, A. A., Stander, N., and Snyman, J. A., “A Pseudo?Discrete Rounding Method for Structural Optimization,” Structural Optimization, Vol. 11, pp. 218?227, 1996.
16. Groenwold, A. A., Stander, N., and Snyman, J. A., “A Regional Genetic Algorithms for the Discrete Optimal Design of Truss Structures,” International Journal for Numerical Methods in Engineering, Vol. 44, No.6, pp. 749?766, 1999.
17. Gupta, O. K., and Ravindran, A., “Nonlinear Mixed Integer Programming and Discrete Optimization,” Progress in Engineering Optimization, R. W. Mayne and K. M. Ragsdell, New York, N. Y. pp. 297?520, 1984.
18. Hajek, B., “Optimization by Simulated Annealing: A Necessary and Sufficient Condition for Convergence,” Adaptive Statistical Procedures and Related Topics, Lecture Notes-Monograph Series, Institute of Mathematical Statistics, Vol. 6, pp. 417?427, 1986.
19. H. B. Harrison, Computer Methods in structural Analysis, Civil Engineering and Engineering Mechanics Series, 1973.
20. Jivotovski, G., “A Gradient Based Heuristic Algorithm and its Application to Discrete Optimization of Bar Structures,” Structural and Multidisciplinary Optimization, Vol. 19, pp. 237?248, 2000.
21. Juang, D. S., Wu, Y. T., and Chang, W. T., “Optimum Design of Truss Structures using Discrete Langrangian Method,” Journal of the Chinese Institute of Engineers, Vol 25(6), pp.755-766, 2003.
22. Kaneko, L., Lawo M., and Thierauf G., “On Computational Procedures for the Force Method,” International Journal of Numerical Method in Engineering, Vol. 18, pp.1469-1495, 1982.
23. Kaveh, A., “Recent Developments in the Force Method of Structural Analysis,” Applied Mechanics Review, Vol. 45, ,pp.401~418, 1992.
24. Kavile, D., and Powell, G. H., “Efficient Reanalysis of Modified Structures,” Journal of the Structural Division, ASCE., Vol. 97, No. 1, pp. 377?392, 1971.
25. Lin, C. Y., and Hajela, P., “Genetic Algorithms in Optimization Problems with Discrete and Integer Design Variables,” Engineering Optimization, Vol. 19, No. 4, pp. 309?327, 1992.
26. Nanakorn, P., and Meesomklin, K., “An Adaptive Penalty Function in Genetic Algorithms for Structural Design Optimiation,” Computers and Structures, Vol. 79, pp. 2527?2539, 2001.
27. Olsen, G., and Vanderplaats, G. N., “A Method for Nonlinear Optimization with Discrete Variables,” AIAA Journal, Vol. 27, No. 11, pp. 1584?1589, 1989.
28. Polson, A. G., “Discrete Optimal Design of Truss Structures,” M. Eng. Dissertation, Department of Mechanical and Aeronautical Engineering, University of Pretoria, 1993.
29. Ponterosso, P., and Fox, D. S. J., “Heuristically Seeded Genetic Algorithms Applied to Truss Optimisation,” Engineering with Computers, Vol. 15, pp. 345?355, 1999.
30. Przemieniecki, J., Theory of Matrix Structural Analysis, McGraw-Hill, New York, 1968.
31. Rajeev, S., and Krishnamoorthy, C. S., “Discrete Optimization of Structures Using Genetic Algorithms,” Journal of Structural Engineering, ASCE., Vol. 118, pp. 1233?1250, 1992.
32. Reddy, J.N., An Introduction to The Finite Element Method, Third Edition, McGraw-Hill, 2006.
33. Reiter, S., and Sherman, G., “Discrete Programming,” Society for Industrial and Applied Mathematics, Vol. 133, No. 6, pp. 864?889, 1965.
34. Robinson, J., “Automatic Selection of Redundancies in the Matrix Force Method: the Rank Technique,” Canadian Aero Space Journal, Vol. 11, pp.9~12, 1965.
35. Salajegheh, E., and Salajegheh, J., “Optimum Design of Structures with Discrete Variables Using Higher Order Approximation,” Computer Methods in Applied Mechanics and Engineering, Vol. 191, pp. 1395?1419, 2002.
36. Salajegheh, E., and Vanderplaats, G. N., “Efficient Optimum Design of Structures with Discrete Design Variables,” Space Structures, Vol. 8, pp. 199?208, 1993.
37. Schmit, L. A., and Fleury, C., “Discrete??Continuous Variable Structural Synthesis Using Dual Methods,” AIAA Journal, Vol. 18, No. 4, pp. 1515?1524, 1980.
38. Shoichiro Nakamura, Applied Numerical Methods In C, Prentice Hall International Editions, 1995.
39. Sui, Y., and Lin, Y., “The Optimization of Beam?Containing Structure with Discrete Cross?Section and its Computer Implementation on Plane Frame Structure,” Chinese Journal of Computational Mechanis, Vol. 4, pp. 62?69, 1987.
40. Sun, H. C., Chai, S., and Wang, Y. F., Discrete Optimum Design of Structures, Dalian University of Technology, 1995.
41. Svanberg, K., “Optimization of Geometry in Truss Design,” Computer Methods in Applied Mechanics and Engineering, Vol. 28, pp. 63?80, 1981.
42. Tauchert, T. D., Energy Principles in Structural Mechanics, McGraw-Hill, 1974.
43. Timoshenko, S., History of Strength of Material, New York: McGraw-Hill, 1953.
44. Tong, W. H., and Liu, W. H., “An Optimization Procedure for Truss Structures with Discrete Design Variables and Dynamics Constrains.” Computers and Structures, Vol. 79, pp. 155?162, 2001.
45. Wah, B. W., and Shang, Y., “A Discrete Lagrangian??Based Global?Search Metod for Solving Satisfiability Problems,” Journal of Global Optimization, Vol. 12, pp. 61?????????.
46. Wah, B. W., Shang, Y., and Wu, Z., “Discrete Lagrangian Method for Optimizing the Design of Multiplierless QMF Filter Banks,” Circuits and Systems II: Analog and Digital Signal Processing, IEEE, Vol. 46 pp. 1179?1191, 1999.
47. Wu, S. J., and Chow, P. T., “The Application of Genetic Alogirthms to Discrete Optimation Problems,” Journal of the Chinese Society of Mechanical Engineers, Vol. 16, No. 6, pp. 587?598, 1995a.
48. Wu, S. J., and Chow, P. T., “Integrated Discrete and Configuration Optimization of Trusses Using Genetic Algorithms,” Computers and Structures, Vol. 55, No. 4, pp. 695?702, 1995b.
49. Wu, Z., “The Discrete Lagrangian Theory ans its Application to Solve Nonlinear Discrete Constrain Optimization Problems,” Master Thesis, Department of Computer Science, University of Illinois at Urbana?Champaign, 1998.
50. 吳泳達,「離散拉格朗日法於結構最佳化設計之應用」,碩士論文,國立中央大學土木工程研究所,中壢,2003。
51. 莊德興,「混合整數-離散實數-連續變數最佳化問題的拉格朗日解法」,中華民國第二十六屆全國力學會議論文集,虎尾技術學院,D003,雲林虎尾, 2002。
52. 莊德興、吳朗益,「離散拉格朗日法於群樁基礎低價化設計之應用」,中國土木水利學刊,第十五卷,第二期,第93?104頁, 2003。
53. 莊德興、張慰慈,「離散拉格朗日法於大型桁架輕量化設計之加速搜尋策略」,中國土木水利工程學刊,Vol. 17, No.1, pp. 143-151, 2005.
54. 張慰慈,「DLM-GA 混合搜尋法於結構離散最佳化設計之應用」,碩士論文,國立中央大學土木工程研究所,中壢,2003。
55. 隋允康,「含樑結構離散斷面的最佳化及其平面構架的程序實現」,計算結構力學與其應用,第七冊,第三卷,1987。
指導教授 莊德興(Der-Shin Juang) 審核日期 2011-4-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明