博碩士論文 973202064 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:13.58.34.132
姓名 徐羽平(Yu-ping Hsu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 溪床礫石堆積在逕流作用下產生土石流之渠槽實驗
(Experimental Study of debris flow induced by runoff at the gravel deposition riverbed)
相關論文
★ 不均勻圓形橋墩之局部沖刷研究★ 砂礫河床之跌水沖刷分析
★ 土石流潛勢判定模式及土石壩滲流破壞之研究★ 港池污染擴散影響因子之探討
★ 不均勻橋墩及群樁基礎之局部沖刷研究★ 邊牆射流及尾檻對砂質底床之沖刷研究
★ 砂粒受水平振動行為之研究★ 土石流發生之水文特性探討
★ 不均勻橋墩與套環保護工法之局部沖刷研究★ 護坦及尾檻下游之局部沖刷分析
★ 橋台束縮與局部沖刷之研究★ 慢顆粒流之輸送帶實驗與影像分析
★ 均勻入滲時坡面地下水流之理論解析★ 尾檻設置對下游之局部沖刷效應
★ 二維斜坡顆粒流之輸送帶實驗與分析★ 斜坡土體滲流破壞引致土石流之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究進行之礫石型土石流之渠槽實驗,透過高速攝影機捕捉顆粒運動
之影像,及Matlab 程式進行顆粒流場之分析。
本研究以Voronoi Patterns 方法獲得流場內顆粒之速度向量,藉此分析顆
粒體的速度分佈及流動特性,實驗之特色在於堆積顆粒在上游受水的壓力
與潤滑作用發生群體運動,一直到產生穩定的顆粒流體化狀態的過程中,
在前端顆粒群體與水的混合狀態是不均勻的,且顆粒將集中於前方具有隆
起的前端,前後段的顆粒濃度也不相同,並與現地土石流具有類似之特徵。
在實驗中將改變上游供水速率和渠槽角度,分析上視和側視的速度剖面,
並與前人之實驗與數值結果相比較,顯示此種的顆粒運動接近於Bagnold
流變學的條件,並與礫石型土石流有相同的特性,進而比較水量與土石流
型態的關係。
摘要(英) In this study, we setup a flume experiment to simulate the initiation of stony
debris flow. We use high speed camera to capture the motion of particles, and
Matlab to analyzing the flow field.
We get the velocity vector in the flow field by Voronoi Patterns method. By
the method, we can analyze the velocity distribution and the flow
characteristics. In the experiment, the accumulated particles at upstream are
saturated water reduces the friction resistance, so the particles will move
entirely. The flow process is non-uniform, combining water and particles, in
the snout. The particles accumulated in the snout are not saturated and the
wave front becomes a bulb. The characteristic of bulbous wave is similar with
the field debris flow.
In the experiment, we change either the angle of flume or the flow rate to
analyze the velocity profiles from both top view and side view. Comparing
with the reference, the velocity profile can be described by Bagnold theory, and
then we also show the relationship between peak flow rate of the debris flow
and the type of dams and inflow.
關鍵字(中) ★ 顆粒流
★ 土石流
★ 速度剖面
★ 潰壩
關鍵字(英) ★ Velocity profile
★ Dam failure
★ Debris flow
★ Granular flow
論文目次 摘 要 .............................................................................................................. i
Abstract ............................................................................................................ ii
誌 謝 ............................................................................................................ iii
目 錄 ............................................................................................................ iv
圖 目 錄 ...................................................................................................... vi
表 目 錄 ...................................................................................................... ix
第一章 緒論 .................................................................................................. 1
1.1 前言 .......................................................................................................... 1
1.2 研究目的.................................................................................................. 1
1.3 研究方法 .............................................................................................. 2
1.4 研究架構 .................................................................................................. 2
第二章 文獻回顧 ........................................................................................... 5
2.1 土石流相關研究 ...................................................................................... 5
2.2 土石流特性 .............................................................................................. 6
2.3 速度剖面研究 ...................................................................................... 7
2.4 顆粒流理論 ............................................................................................ 12
第三章 實驗佈置及方法 ............................................................................. 16
3.1 實驗渠槽 ................................................................................................ 16
3.2 實驗步驟 ................................................................................................ 17
3.3 顆粒特性 ................................................................................................ 21
3.4 實驗量測設備及方法 ............................................................................. 23
第四章 實驗結果與討論 ............................................................................. 29
4.1 實驗特性 ................................................................................................ 29
4.1.1 顆粒底床特性 ..................................................................................................................29
v
4.1.2 波峰特性..........................................................................................................................30
4.2 坡度與流量影響 ..................................................................................... 35
4.2.1 坡度對波峰高度的影響 ...................................................................................................35
4.2.2 供水流量對波峰高度影響 ...............................................................................................36
4.2.3 顆粒速度與坡度、流量之關係 .......................................................................................38
4.3 速度剖面分析 ......................................................................................... 39
4.3.1 側視速度剖面 ..................................................................................................................39
4.3.2 上視速度剖面 ..................................................................................................................44
4.3 堆積顆粒破壞啟動 ................................................................................. 48
4.3.2 上游堆積顆粒啟動 ..........................................................................................................50
4.4 破壞型態比較 .................................................................................... 52
第五章 結論與建議 ..................................................................................... 54
參考文獻 ......................................................................................................... 56
參考文獻 1. Armanini, A., R. Capart, L. Fraccaroolo and M. Larcher (2005),
“Rheological Stratification in Experimental Free-Surface Flows of
Granular-Liquid Mixtures”, J. Fluid Mech.(2005), Vol. 532, pp.269-319.
2. Berzi., D., and J. T. Jenkins, (2009), “Steady Inclined Flows of
Granular-Fluid Mixtures”, J. Fluid Mech. (2009), Vol. 641, pp. 359-387.
3. Bi, W., R. Delannay, P. Richard, N. Taberlet and A. Valance (2005), “Twoand
Three-Dimensional Confined Granular Chute Flows: Experimental and
Numerical Results”, Journal of Physics: Condensed Matter,
doi:10.1088/0953-8984/17/24/006.
4. Capart, H., D. L. Young, Y. Zech (2002), “Voronoi Imaging Methods for the
Measurement of Granular Flows”, Experiments in Fluids, Vol. 32 (2002),
pp.121-135.
5. Cawthorn, C. J. (2008), “A Constitutive Law for Granular Flows: Predicting
the Appearance of Static Zones”, Smith-Knight/Rayleigh-Knight Essay.
6. Davis, T.R.H. (1990), “Debris-Flow Surges Experimental Simulation”,
Journal of Hydrology (N.Z.), Vol. 29,No. 1,(1990), pp.23-46.
7. Hsu, L., W. E. Dietrich and L. S. Sklar (2008), Experimental Study of
Bedrock Erosion by Granular Flows”, Journal of Geophysical Research,
VOL. 113, F02001, doi:10.1029/2007JF000778, 2008.
8. Jop, P., Y. Forterre and O. Pouliquen (2005), “Crucial Role of Sidewalls in
Granular Surface Flows: Consequences For the Rheology”, J. Fluid Mech.
(2005), Vol. 541, pp. 167-192.
5 7
9. Lamberti, A. (2006), “Experimental Analysis of the Impact of Dry
Avalanches on Structures and Implication for Debris Flows”, Journal of
Hydraulic Research Vol. 44, NO. 4(2006),pp. 522-534.
10. Midi, G. D. R (2004), “On Dense Granular Flows”, Eur. Phys. J. E, Vol.14,
pp.341-365.
11. Moriguchi, S., R. I. Borja, A. Yashima, K. Sawada (2009), “Estimating the
Impact Force Generated by Granular Glow on a Rigid Obstruction”, Acta
Geotechnica, 4:57–71. DOI 10.1007/s11440-009-0084-5.
12. Okuda, S., H. Suwa, K. Okunishi, K. Yokoyama, K. Nakano, and K. Ogawa
(1978), “Observation at Calley Kamikamihorizawa of Mt. Yakedake in
1977”, Annuals,DPRI,21B-1:277-296(in Japanese).
13. Paolo, A.D. (2006), “Experimental Analysis of the Segregation of Dry
Avalanches and Implications for Debris Flows”, Journal of Hydraulic
Research Vol. 44,No. 6(2006), pp.796-806.
14. Pouliquen, O. (1999), “Scaling Laws in Granular Flows Down Rough
Inclined Planes”, Physics of Fluids, Vol. 11, No. 3., pp. 542-548.
15. Scheafer, M., L. Bugnion, M. Kern, P. Bartelt (2010), “Position dependent
velocity profiles in granular avalanches”, Granular Matter, DOI
10.1007/s10035-010-0179-6.
16. Taberlet, N., P. Richard, A. Valance, W. Losert, J. M. Pasini, J. T. Jenkins
and R. Delannay (2003), “Superstable Granular Heap in a Thin Channel”,
Physical Review Letters, Vol 91, No. 26, DOI:10.1103/Phys Rev
Lett.91.264301.
17. 方啟守 (2004),「振動床於弱振動下顆粒分離機制研究」,中央大學機
械工程學系碩士論文,桃園。
5 8
18. 中華水土保持學會 (2006),「水土保持手冊」 ,工-1-22。
指導教授 周憲德(Hsien-Ter Chou) 審核日期 2010-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明