博碩士論文 973202601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:18.118.119.238
姓名 陳仕豪(Isach W.Z. Karmiadji)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 氯離子入侵混凝土之擴散係數時間效應與飛灰之影響
(The Effect of Fly Ash and Time Dependent Chloride Diffusion Coefficient on the Chloride Ingress in Concrete)
相關論文
★ 電弧爐氧化碴特性及取代混凝土粗骨材之成效研究★ 路基土壤回彈模數試驗系統量測不確定度與永久變形行為探討
★ 工業廢棄物再利用於營建工程粒料策略之研究★ 以鹼活化技術資源化電弧爐煉鋼還原碴之研究
★ 低放處置場工程障壁之溶出失鈣及劣化敏感度分析★ 以知識本體技術與探勘方法探討台北都會區道路工程與管理系統之研究
★ 電弧爐煉鋼爐碴特性及取代混凝土粗骨材之研究★ 三維有限元素應用於柔性鋪面之非線性分析
★ 放射性廢料處置場緩衝材料之力學性質★ 放射性廢料深層處置場填封用薄漿之流變性與耐久性研究
★ 路基土壤受反覆載重作用之累積永久變形研究★ 還原碴取代部份水泥之研究
★ 路基土壤反覆載重下之回彈與塑性行為及模式建構★ 重載交通荷重對路面損壞分析模式之建立
★ 鹼活化電弧爐還原碴之水化反應特性★ 電弧爐氧化碴為混凝土骨材之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 低放射性最終處置設施之主體為混凝土,但不同於一般混凝土結構物之用途,低放射性最終處置設施的服務年限可能長達數百年之久。另外由於台灣環境氣候潮溼,四面環海,場址的選擇可能位於臨海區域且採用地表處置或隧道處置,此環境利於腐蝕反應之發生,使得最終處置設施長期在此環境下可能產生劣化,進而影響混凝土長期耐久性。
本研究乃針對添加不同含量飛灰之混凝土進行氯離子浸泡試驗(ponding test),以實驗室模擬混凝土工程障壁受海水入侵作用下,不同飛灰使用量之混凝土對改善混凝土抵抗氯離子入侵的成效。實驗證實添加不同含量之飛灰對混凝土抵抗氯離子入侵有顯著的效果,且使擴散係數隨時間而降低;並利用試驗結果依據費克第二定律(Fick’s second law)評估氯離子擴散係數與時間的效應及飛灰添加量之影響,同時以迴歸方法求取擴散係數隨時間變化之影響參數。另外,運用Life-365及4SIGHT等二個程式,預測氯離子入侵剖面與實驗所得氯離子入侵剖面的關連性,期未來可進一步發展,應用於低放射性廢棄物最終處置場混凝土障壁服務年限之推估。
摘要(英) Salt ponding test was conducted on mature concrete specimens dry-stored in laboratory condition and on concretes immediately exposed to chloride after 28 days of moist curing. Analysis on the various properties of concretes with fly ash addition and their implication to chloride ingress were done. Experimental result indicates that fly ash addition increases the maximum surface chloride value of concrete while reducing the chloride diffusivity with time. These concrete properties proved to have an important effect to the prediction of chloride ingress using error function solution to Fick’s second law. The prolonged dry-storage does not seem to have a significant impact on the change in chloride diffusion properties of the concrete specimens. General agreement between experimental data with Life-365 & 4SIGHT predicted values of concrete properties indicate the applicability of both concrete performance prediction software in considering the influence of fly ash addition and the reduction of diffusion coefficient with time.
關鍵字(中) ★ 擴散
★ 氯離子
★ 浸泡試驗
★ 飛灰
關鍵字(英) ★ Ponding
★ Life-365
★ 4SIGHT
★ Chloride
★ Diffusion
論文目次 CHAPTER ONE INTRODUCTION 1
1.1 Background 1
1.2 Objectives 2
1.3 Thesis Organization 3
CHAPTER TWO LITERATURE REVIEW 5
2.1 Reinforced Concrete Degradation 5
2.2 Chloride Penetration Mechanism 6
2.2.1 Sorptivity or Surface Absorption 6
2.2.2 Diffusion 7
2.2.3 Chloride Binding 7
2.2.4 Wicking Action 8
2.2.5 Dispersion 9
2.2.6 Permeation 9
2.3 Chloride Diffusion 9
2.3.1 Diffusion Reduction Coefficient 13
2.4 Factors Influencing Chloride Diffusion 16
2.4.1 w/cm Ratio 16
2.4.2 Cement Type 17
2.4.3 Type of Coarse Aggregate 17
2.4.4 Chemical Admixtures 18
2.4.5 Supplementary Cementing Materials (SCM) 18
2.4.6 Curing Regimes 19
2.4.7 Age and Moisture Condition of Concrete 19
2.4.8 Others 20
2.5 Influence of Fly Ash 20
2.6 Chloride Penetration Resistance Test 24
2.6.1 NordTest NTBuild 443 Bulk Diffusion Test 25
2.6.2 AASHTO T259 Standard Method of Test for Resistance of Concrete to Chloride Ion Penetration (Salt Ponding Test) 26
2.7 Service Life Models 28
2.7.1 Life-365 28
2.7.2 4SIGHT 31
CHAPTER THREE EXPERIMENTAL METHODOLOGY 34
3.1 Overview 34
3.2 Materials 37
3.3 Specimen Mix Design 41
3.4 Salt Ponding 41
3.5 Specimen Cutting 43
3.6 Determination of Chloride Content 45
3.6.1. Bound (Total) Chloride Determination 46
3.7 Chloride Penetration Profile 48
3.8 Diffusion Properties Analysis and Comparison with Existing Models 48
3.8.1 Surface Chloride Concentration & Apparent Diffusion Determination 48
3.8.2 Diffusion Reduction Coefficient Calculation 49
3.8.3 Empirical Relationship Equation Determination 49
3.8.4 Comparison with Existing Lifetime Prediction Models 50
3.8.5 Validation of Empirical Relationship Equation 51
CHAPTER FOUR RESULTS AND DISCUSSION 52
4.1 Experimental Data 52
4.1.1 Series 1 Experimental Data 52
4.1.2 Series 2 Experimental Data 57
4.2 Determination of Concrete Properties 60
4.2.1 Dapp, Cs, and Cmax Determination 60
4.2.2 Determination of m and D28 Values 65
4.3 Comparison between Experimental & Predicted Result 68
4.3.1 4SIGHT Approximation and Input Values 68
4.3.2 Life-365 Approximation and Input Values 71
4.3.3 Chloride Profile Comparison 72
4.3.4 Comparison of Experimental m and D28 Values with 4SIGHT and Life-365 80
4.4 Determination of Empirical Relationships 83
4.4.1 Empirical Relationship Equation 83
4.4.2 Relationship Equation Validation 85
CHAPTER FIVE CONCLUSIONS & SUGGESTIONS FOR FURTHER RESEARCH 95
5.1 Conclusions 95
5.2 Suggestions 97
REFERENCES 98
APPENDIX 104
1. Series 1 Data 104
1.1 30 Days Exposure 104
1.2 60 Days Exposure 105
1.3 90 Days Exposure 106
2. Series 2 Data 107
2.1 90 Days Exposure 107
2.2 180 Days Exposure 108
2.3 365 Days Exposure 109
參考文獻 1. Koch, Gerhardus, et.al., Corrosion Costs and Preventive Strategies in the United States, FHWA-RD-01-156, Federal Highway Administration, 2007
2. Callanan, T., and Richardson, M., Modelling Chloride Ingress in Concrete: A Comparative Study of Laboratory and Field Experience, SP212-25, ACI Special Publication, p. 389-408, 2003
3. Maheswaran, T., and Sanjayan, J. G., A semi-closed-form solution for chloride diffusion in concrete with time-varying parameters, Magazine of Concrete Research, 56, p. 359-366, 2004
4. Life-365 Service Life Prediction Model and Computer Program for Predicting the Service Life and Life-Cycle Cost of Reinforced Concrete Exposed to Chlorides, Life-365 Consortium II, 2010
5. Thomas, Michael D. A., Bamforth, Phil B., Modelling chloride diffusion in concrete: Effect of fly ash and slag, Cement and Concrete Research, 29, p. 487-495, 1999
6. Bijen, Jan, Benefits of slag and fly ash, Construction and Building Materials, 10(5), p. 309-314, 1996,
7. Luping, Tang, and Gulikers, Joost, On the mathematics of time-dependent apparent chloride diffusion coefficient in concrete, Cement and Concrete Research, 37, p. 589-595, 2007
8. Saetta, Anna V., Scotta, Roberto V., and Vitalini, Renato V., Analysis of Chloride Diffusion into Partially Saturated Concrete, ACI Materials Journal, 90(5), p. 441-451, 1993
9. Angst, Ueli, Elsener, Bernhard, Larsen, Claus K., Vennesland, Oystein, Critical chloride content in reinforced concrete – A review, Cement and Concrete Research, 39, p. 1122-1138, 2009
10. Han, Sang-Hun, Influence of diffusion coefficient on chloride ion penetration of concrete structure, Construction and Building Materials, 21, p. 370-378, 2007,
11. Martin Perez, B., Zibara, H., Hooton, R. D., and Thomas, M. D. A., A Study of the effect of chloride binding on service life predictions, Cement and Concrete Research, 30, p. 1215-1223, 2000
12. Boddy, Andrea, Bentz, Evan, Thomas, M. D. A., and Hooton, R. D., An overview and sensitivity study of a multimechanistic chloride transport model, Cement and Concrete Research, 29, p. 827-837, 1999
13. Martys, Nicos S., Survey of Concrete Transport Properties and their Measurement, NISTIR 5592, U.S. Department of Commerce, 1995
14. Wong, S. F., Wee, T. H., Swaddiwudhipong, S., and Lee, S. L., Study of water movement in concrete, Magazine of Concrete Research, 53(3), p. 205-220, 2001
15. Aldred, J. M., and Rangan, B. V., The Influence of Wick Action on Chloride Transport in Concrete, SP212-50, ACI Special Publication, p. 807-822, 2003
16. Puyate, Y. T., and Lawrence, C. J., Steady state solutions for chloride distribution due to wick action in concrete, Chemical Engineering Science, 55, p. 3329-3334, 2000
17. Song, Sheng-Rong, et.al, Hydrochemical Changes in Spring Waters in Taiwan: Implications for Evaluating Sites for Earthquake Precursory Monitoring, TAO, 16(4), p. 745-762, 2005
18. Stanish, K. D., Hooton, R. D., and Thomas, M. D. A., Testing the Chloride Penetration Resistance of Concrete: A Literature Review, Federal Highway Administration, 2000
19. Khitab, A., Lorente, S., and Ollivier, J. P., Predictive model for chloride penetration through concrete, Magazine of Concrete Research, 57, No. 9, p. 511-520, 2005
20. Chatterji, S., On the Applicability of Fick’s Second Law to Chloride Ion Migration Through Portland Cement Concrete, Cement and Concrete Research, 25(2), p. 299-303, 1995
21. Lu, Xinying, Application of the Nernst-Einstein Equation to Concrete, Cement and Concrete Research, 27(2), p. 293-302, 1997
22. Sugiyama, T., Ritthichauy, W., Tsuji, Y., Experimental investigation and numerical modeling of chloride penetration and calcium dissolution in saturated concrete, Cement and Concrete Research, 38, p. 49-67, 2008
23. Stanish, Kyle, and Thomas, Michael, The use of bulk diffusion tests to establish time-dependent concrete chloride diffusion coefficients, Cement and Concrete Research, 33, p. 55-62, 2003
24. Nokken, Michelle, Boddy, Andrea, Hooton, R. D., and Thomas, M. D. A., Time dependent diffusion in concrete – three laboratory studies, Cement and Concrete Research, 36, p. 200-207, 2006
25. Yeih, W. D., Huang, R., and Chang, J. J., A Study of Chloride Diffusion Properties of Concrete at Early Age, Journal of Marine Science and Technology, 2(1), p. 61-67, 1994
26. Buenfeld, N. R., and Okundi, E., Effect of cement content on transport in concrete, Magazine of Concrete Research, 50(4), p. 339-351, 1998
27. Hobbs, D. W., Aggregate influence on chloride ion diffusion into concrete, Cement and Concrete Research, 29, p. 1995-1998, 1999
28. Bentz., Dale P., A virtual rapid chloride permeability test, Cement and Concrete Composites, 29, p. 723-731, 2007
29. Song, Ha-Won, Lee, Chang-Hong, Ann, Ki Yong, Factors influencing chloride transport in concrete structures exposed to marine environments, Cement and Concrete Composites, 30, p. 113-121, 2008
30. Thomas, M. D. A., Shehata, M. H., Shashiprakash, S. G., Hopkins, D. S., and Cail, K., Use of ternary cementitious systems containing silica fume and fly ash in concrete, Cement and Concrete Research, 29, p. 1207-1214, 1999
31. Boddy, Andrea, Hooton, R. D., and Gruber, K. A., Long-term testing of the chloride-penetration resistance of concrete containing high-reactivity metakaolin, Cement and Concrete Research, 31, p. 759-765, 2001
32. Gruber, K. A., Ramlochan, Terry, Boddy, Andrea, Hooton, R. D., and Thomas, M. D. A., Increasing concrete durability with high-reactivity metakaolin, Cement & Concrete Composites, 23, p. 479-484, 2001
33. Bentz, D. P., A review of early-age properties of cement-based materials, Cement and Concrete Research, 38, p. 196-204, 2008
34. Snyder, Kenneth A., and Clifton, James R., 4SIGHT Manual: A Computer Program for Modelling Degradation of Underground Low Level Waste Concrete Vaults, NISTIR 5612, Department of Commerce, 1995
35. Tang, L., and Sorensen, H. E., Precision of the Nordic test methods for measuring the chloride diffusion/migration coefficients of concrete, Materials and Structures, 34, p. 479-485, 2001
36. Zhang, Tiewei, and Gjorv, Odd E., Diffusion Behaviour of Chloride Ions in Concrete, Cement and Concrete Research, 26(6), p. 907-917, 1996
37. Snyder, K. A., The relationship between the formation factor and the diffusion coefficient of porous materials saturated with concentrated electrolytes: theoretical and experimental considerations, Concrete Science and Engineering, 3(12), p. 216-224, 2001
38. Snyder, K. A., Validation and Modification of the 4SIGHT Computer Program, NISTIR 6747, Department of Commerce, 2001
39. Thomas, Michael, Chloride Thresholds in Marine Concrete, Cement and Concrete Research, 26(4), p. 513-519, 1996
40. Malvar, L.J., Alkali-Silica Reaction Mitigation State-of-the-Art, TR-2195-SHR, Naval Facilities Engineering Service Center, 2001
41. Standard Method of Test for Sampling and Testing for Chloride Ion in Concrete and Concrete Raw Materials, T 260-1, AASHTO, 2001
42. McGrath, Patrick F., and Hooton, R. Doug, Re-evaluation of the AASHTO T259 90-day salt ponding test, Cement and Concrete Research, 29, p. 1239-1248, 1999,
43. Bentz, Dale P., Feng, Xiuping, and Hooton, R. Douglas, Time-Dependent Diffusivities: Possible Misinterpretation due to Spatial Dependence, Proc. International RILEM Workshop, Testing and Modelling the Chloride Ingress into Concrete, Paris, France, p. 225-233, 2000
44. Costa, A., and Appleton, J., Chloride penetration into concrete in marine environment – Part I : Main parameters affecting chloride penetration, Materials and Structures, 32, p. 242-259, 1999
45. Costa, A., and Appleton, J., Chloride penetration into concrete in marine environment – Part II: Prediction of long term chloride penetration, Materials and Structures, 32, p. 354-359, 1999
46. Life-365 Version 2.0.1, September 2009, The Life-365 Consortium, 1 March 2010 < http://www.life-365.org/download.html>
47. 4SIGHT, In Computer Integrated Knowledge System for High Performance Concrete, Retrieved from http://concrete.nist.gov/4sight
48. Standard Test Methods for Chemical Analysis of Hydraulic Cement, C114-09a, ASTM International, 2010
49. Standard Test Method for Acid-Soluble Chloride in Mortar and Concrete, C 1152/ C 1152M-04, ASTM International, 2004
50. DataFit 9.0, Oakdale Engineering, 1 March 2010
51. LAB Fit Curve Fitting Software, Universidade Federal de Campina Grande, 1 March 2010
52. Estimation of Pore Solution Conductivity, In Computer Integrated Knowledge System for High Performance Concrete, Retrieved from http://ciks.cbt.nist.gov/poresolncalc.html
53. Virtual Rapid Chloride Permeability Test, In Computer Integrated Knowledge System for High Performance Concrete, Retrieved from http://ciks.cbt.nist.gov/VirtualRCPT.html
54. Sodium Chloride Density Concentration Table, In Mettler Toledo, Retrieved from http://us.mt.com/us/en/home/supportive_content/application_editorials.Sodium_Chloride_de_e.twoColEd.html
指導教授 黃偉慶(Wei-hsing Huang) 審核日期 2010-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明