參考文獻 |
[1] T. Sakata, Y. Miyahara “DNA Sequencing Based on Intrinsic Molecular Charges”, Angew. Chem. Int. Ed., 45 (2006) 2225 –2228
[2] T. Sakataa, M. Kamahorib, Y. Miyaharaa, “Immobilization of oligonucleotide probes on Si3N4 surface and its application to genetic field effect transistor”, Materials Science and Engineering C, 24 (2004) 827–832
[3] T. Sakata, Y. Miyahara, “Detection of DNA recognition events using multi-well field effect devices”, Biosensors and Bioelectronics, 21 (2005) 827–832
[4] J. Li, Y. Zhang, T. Yang, H. Zhang, Y. Yang, P. Xiao, “DNA biosensor by self-assembly of carbon nanotubes and DNA to detect riboflavin”, Materials Science and Engineering C, 29 (2009) 2360–2364
[5] S.G. Wang, R. Wang, P.J. Sellin, Qing Zhang, “DNA biosensors based on self-assembled carbon nanotubes”, Biochemical and Biophysical Research Communications, 325 (2004) 1433–1437
[6] K. V. Singh, R. R. Pandey, X. Wang, R. Lake, C. S. Ozkan, K. Wang, M. Ozkan, ” Covalent functionalization of single walled carbon nanotubes with peptide nucleic acid: Nanocomponents for molecular level electronics”, Carbon, 44 (2006) 1730–1739
[7] G. wang, Y. Li, Y. Huang, “Structures and electronic properties of peanut-shaped dimers and carbon Nanotubes”, Journal of Physical Chemistry B, 109, 21,(2005) 10957-10961
[8] Sander J. Tans, Alwin R. M. Verschueren & Cees Dekker, “Room- temperature transistor based on a single carbon nanotube”, Nature, 393 (1998) 49-52
[9] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354 (1991) 56-58
[10] S. Iijima, T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature, 363 (1993) 603-605
[11] D.S. Bethune, C.H. Kiang, M.S. Deveries, “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layers wells”, Nature, 363 (1993) 605-607
[12] R. T. K. Baker, M. A. Barber, P. S. Harris, F. S. Feates, R. J. Waite, “Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene”, Journal of catalysis, 26 (1972) 51-62
[13] G. G. Tibbetts et al., “Vapor-grown carbon fibers: status and prospectus” , Carbon, 27 (1989) 745.
[14] 陳紹良,以微波化學氣相沉積法成長奈米碳管之研究,國立中央大學碩士論文,2003
[15] Sergei Lebedkin et al., “Single-wall carbon nanotubes with diameters approaching 6 nmobtained by laser vaporization,” Carbon, 40 (2002) 417–423
[16] R. Andrews, D. Jacques, A. M. Rao, F. Derbyshire, D. Qian, X. Fan, E. C. Dickey, J. Chen, “Continuous production of aligned carbon nanotubes: a step closer to commercial realization”, Chem. Phys. Lett., 303 (1999) 467-474
[17] Y.S. Woo et al., “In situ diagnosis of chemical species for the growth of carbon nanotubes in microwave plasma-enhanced chemical vapor deposition”, Diamond and Related Materials, 11(2002)59-66
[18] Th. Henning, F. Salama, “Carbon in the universe”, Science, 28 (1998) 2204-2210
[19] W. Hoenlein et al.,“Carbon nanotube applications in microelectronics”, IEEE transactions on components and packaging technologies, 27 (2004) 629-634
[20] 成會明、張勁燕,“奈米碳管”, 五南圖書出版股份有限公司, 2006 , 164
[21] F. Kreupl, A. P. Graham, G. S. Duesberg, W. Steinhogl, M. Liebau, E. Unger, W. Honlein, “Carbon nanotube in interconnect applications” , Microelectrinic Engineering, 64 (2002) 399-408
[22] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, J. M. Kim, “Fully sealed, high-brightness carbon-nanotube field-emission display” , Applied Physics Letters, 75 (1999) 3129-3132
[23] G. Z. Yue, Q. Qiu, B. Gao, Y. Cheng, J. Zhang, H. Shimoda, S. Chang, J. P. Lu, O. Zhou, “Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube-based field- emission cathode” , Applied Physics Letters, 81 (2002) 355-358
[24] W. I. Milne, K. B. K. Teo, G. A. J. Amaratunga, P. Legagneux, L. Gangloff, J. P. Schnell, V. Semet, V. Thien, Binh, O. Groening, “Carbon nanotubes as field emission sources” , Journal of Materials Chemistry, 14 (2004) 933-943
[25] A. Star, J. C. P. Gabriel, K. Bradley, G. Gruner, “Electronic detection of specific protein binding using nanotube FET devices” , Nano Letters, 3 (2003) 459-463
[26] J. Koehne, J. Li, A. M. Cassell, H. Chen, Q. Ye, H. T. Ng, J. Han, M. Meyyappan, “The fabrication and electrochemical characterization of carbon nanotube nanoelectrode arrays”, Journal of Materials Chemistry, 14 (2004) 676-684
[27] M.J. Sch¨oning*, D. Brinkmann, D. Rolka, C. Demuth, A. Poghossian, “CIP (cleaning-in-place) suitable “non-glass” pH sensor based on a Ta2O5-gate EIS structure”, Sensors and Actuators B, 111–112 (2005) 423–429
[28] http://tong.dxy.cn/experiment/430/431/432/21790.htm
[29] J. Diao, D. Ren, J. R. Engstrom, K. H. Lee*, “A surface modiWcation strategy on silicon nitride for developing biosensors”, Analytical Biochemistry, 343 (2005) 322–328
[30]http://www.cem.msu.edu/~reusch/VirtualText/Spectrpy/InfraRed/infrared.htm#ir1
[31] M. Turek, L. Ketterer, M. Claßen, H. K. Berndt, G. Elbers, P. Krüger, M. Keusgen and M. J. Schöning*, “Development and Electrochemical Investigations of an EIS- (Electrolyte-Insulator-Semiconductor) based Biosensor for Cyanide Detection”, Sensors, 7 (2007) 1415-1426
[32] P. D. Tam*, N. V. Hieu*, N. D. Chien, A. T. Le, M. A. Tuan, “DNA sensor development based on multi-wall carbon nanotubes for label-free influenza virus (type A) detection”, Journal of Immunological Methods, 350 (2009) 118–124
|