博碩士論文 973203046 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.145.42.128
姓名 唐瑋(Wei Tang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 Ti/Fe比與合金元素(Mn,Ni)對於Ti-Fe儲氫合金吸放氫特性之影響
(Effect of the Ti/Fe ratio and element M(M=Mn,Ni)substitution on hydrogen storage properties of Ti-Fe alloys)
相關論文
★ 非破壞性探討安定化熱處理對Al-7Mg鍛造合金微結構、機械與腐蝕性質之影響★ 非破壞性探討安定化熱處理對Al-10Mg鍛造合金微結構、機械與腐蝕性質之影響
★ 冷加工與熱處理對AA7055鍛造型鋁合金微結構與機械性質的影響★ 冷抽量對AA7055(Al-Zn-Mg-Cu)-T6態合金腐蝕性質和微結構之影響
★ 熱力微照射製作絕緣層矽晶材料之研究★ 分流擠型和微量Sc對Al-5.6Mg-0.7Mn合金微結構及熱加工性之影響
★ 銀對於鎂鎳儲氫合金吸放氫及電化學性質之研究★ 氧化物催化劑對亞共晶Mg-Ni合金之儲放氫特性研究
★ 熱處理對7050鋁合金應力腐蝕與含鈧鋁薄膜特性之影響研究★ Ti-V-Cr與Mg-Co基BCC儲氫合金性質研究
★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究★ 銅、鎂含量與熱處理對Al-14.5Si-Cu-Mg合金拉伸、熱穩定與磨耗性質之影響
★ 恆溫蒸發熔煉鑄造製程合成鎂基介金屬化合物及其氫化特性之研究★ 無電鍍鎳多壁奈米碳管對Mg-23.5wt.%Ni共晶合金儲放氫特性之影響
★ 微量Sc對A356鑄造鋁合金機械性質之影響★ 熱處理對車用鋁合金材料熱穩定性與表面性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以真空電弧熔煉法製備TixFe(1-y)My(M=Mn,Ni)系列合金,藉由微結構觀察與儲氫特性測量,探討不同Ti/Fe比與合金元素Mn、Ni對於儲氫性質之影響。結果顯示提升Ti/Fe比可改善合金活化特性與儲氫量,Ti1.1Fe的有效放氫量為1.54 wt%,是Ti-Fe二元合金中有效放氫量最佳之組成。當Mn的添加不超過12wt%時,有助於提升Ti1.1Fe(1-x)Mnx合金活化特性與有效放氫量。其Ti1.1Fe0.75Mn0.25合金有效放氫量為1.54 wt%。Ti1.1Fe0.75Mn0.25合金隨Ni含量增加,合金中各項儲氫性質皆下降。以活化特性、動力學性質、有效放氫量與遲滯行為各項儲氫特性作比較,Ti1.1Fe0.75Mn0.25為此一系列合金最佳成分。
摘要(英) This research plans to utilize arc-melted method to prepare TixFe(1-y)My (M=Mn,Ni) alloys,and then studies the effect of the Ti/Fe ratio and element M(M=Mn,Ni) substitution on Ti-Fe alloys of hydrogen storage properties with different microstructure.It was found that increasing of Ti/Fe ratio could improve activation characteristics and effective hydrogen content.The best effective hydrogen storage capacity of Ti-Fe binary is 1.54wt% and its composition is Ti1.1Fe.The activation characteristics and hydrogen desorption capacity was improved when Mn contained less than 12 wt%. The best effective hydrogen storage capacity of Ti1.1Fe0.75Mn0.25 alloy is 1.54 wt%.The hydrogenation properties got worse with increasing of Ni content in Ti1.1Fe0.75Mn0.25 alloy. In consideration of activation properties, kinetics, effective capacity and hysteresis characteristics, Ti1.1Fe0.75Mn0.25 alloy is the best composition in this study.
關鍵字(中) ★ 儲氫合金
★ β-Ti相
★ Ti-Fe合金
關鍵字(英) ★ β-Ti phase
★ Hydrogen storage material
★ Ti-Fe alloys
論文目次 一、前言與文獻回顧……………………………………………………1
1-1 儲氫合金發展簡介……………………………………………1
1-2 儲氫合金種類…………………………………………………2
1-3 儲氫合金吸放氫特性…………………………………………3
1-3-1 吸放氫動力學性質……………………………………3
1-3-2 熱力學性質……………………………………………4
1-4 Ti系列儲氫合金簡介…………………………………………8
1-4-1合金元素對鈦基儲氫合金吸放氫平台性質之影響…8
1-4-2鈦基AB型TiFe儲氫合金………………………………9
1-4-3 Laves相AB2型TiM2儲氫合金………………………12
1-4-4 BCC固溶型TiV2 儲氫合金…………………………13
1-5 研究背景與目的……………………………………………16
二、實驗方法與步驟…………………………………………………18
2-1實驗方法與流程………………………………………………18
2-2儲氫合金置備流程……………………………………………19
2-3感應耦合電漿質譜儀(Inductively coupled plasma-
mass spectrometry)成分分析……………………………20
2-4 X光粉末繞射分析……………………………………………21
2-5微結構分析……………………………………………………21
2-4-1 金相觀察 (OM)………………………………………21
2-4-2 電子微探儀分析 (EPMA)……………………………21
2-6合金儲放氫特性測試…………………………………………22
2-7熱程控脫附儀分析(TPD)……………………………………22
三、結果與討論………………………………………………………23
3-1 不同Ti/Fe比對於TiFe合金吸放氫性質之研究……………23
3-1-1 合金結構分析………………………………………23
3-1-2 儲放氫特性分析……………………………………27
3-1-2-1 活化測試……………………………………27
3-1-2-2吸放氫動力學測試…………………………29
3-1-2-3 PCI曲線量測………………………………32
3-1-3 熱程控脫附儀分析…………………………………34
3-2 Mn含量對於TiFe合金吸放氫性質之研究…………………37
3-2-1 合金結構分析………………………………………37
3-2-2 合金儲放氫性質測試………………………………40
3-2-2-1 活化測試……………………………………40
3-2-2-2 吸放氫動力學測試…………………………41
3-2-2-3 PCI曲線測試………………………………43
3-3 Ni含量對於TiFe合金吸放氫性質之研究…………………45
3-3-1 合金結構分析………………………………………45
3-3-2 合金儲放氫性質測試………………………………48
3-3-2-1 吸氫動力學測試……………………………48
3-3-2-2 PCI曲線測試………………………………50
四、結論………………………………………………………………52
五、未來工作…………………………………………………………53
六、參考文獻…………………………………………………………54
參考文獻 [1] A.James, D.Armin, Jun Wang,“lmplementing a hydrogen economy”,materialstoday, pp1367, 2003
[2] T. Graham, “On the Relation of Hydrogen to Palladium”, J. Franklin Inst., Vol.87, pp.256-266, 1869.
[3] J.J. Reilly, R.H. Wiswall, “Reaction of Hydrogen with Alloys of
Magnesium and Nickel and the Formation of Mg2NiH4”, Inorg. Chem, Vol.7, pp.2254-2256, 1968.
[4] J.J. Reilly, R.H. Wiswall, “Formation and Properties of Iron Titanium
Hydride”, Inorg. Chem., Vol.13, pp.218-222, 1974.
[5] J.H.N. Vucht, F.A. Kuijpers, H.C.A.M. Bruning, “Reversible
Room-Temperature Absorption of Large Quantities of Hydrogen by Intermetallic Compounds”, Philips Res. Repts., Vol.25, pp.133-140, 1970.
[6] 胡子龍,“儲氫材料” , 化學工業出版社, pp. 135-136 , 2002
[7] Louis Schlapbach, Andreas Zuttel, “Hydrogen-storage materials for mobile applications” , Nature, Vol. 414, pp. 353-358 , 2001
[8] M.Martin, C.Gommel, C.Borkhart, E.Fromm, “Absorption and Desorption Kinetics of Hydrogen Storage Alloys”, J. Alloys Comp., Vol.238, pp.193-201, 1996.
[9] Anaba Anani, Arnaldo Visintin, Konstantin Petrov, Supramaniam Srinivasan, “Alloys for hydrogen storage in nickel/hydrogen and nickel/metal hydride batteries”, J. Power Sources, Vol.47, pp.261-275, 1994.
[10] A. Zuttel, “Materials for hydrogen storage”, Materials Today, Vol.6 pp.24-33, 2003.
[11] Gary Sandrock, “A panoramic overview of hydrogen storage alloys from a gas reaction point of view”, J. Alloys Comp., Vol.293-295, pp.877-888, 1999.
[12] K. Aoki, M. Kamachi, T. Masumoto, “Thermodynamics of Hydrogen Absorption in Amorphous Zr-Ni Alloys”, Journal of Non-Crystalline Solids, Vol.61-62, pp.679-684, 1984.
[13] V.K.Sinha,W.E. Wallace, “The hyperstoichiometric ZrMn1+xFe1+y−H2 system II: Hysteresis effect”, J. Less-Common Met., Vol.91, pp.239-249, 1983.
[14] K. Hong, “The development of hydrogen storage alloys and the progress of nickel hydride batteries” J. Power Sources .Vol. 147, pp. 85-89 , 2001
[15] X.H. Wang, Y.Y. Beia, “Investigation on high-pressure metal hydride hydrogen compressors” J. Hydrogen Energy,Vol. 32, Issue 16, , pp. 4011-40152007
[16] J. G Park, H. Y Jang, S. C Han, Paul S. Lee, J. Y Lee“ The
thermodynamic properties of Ti–Zr–Cr–Mn Laves phase alloys” J.Alloy Comp, Vol. 325, Issues 1-2, pp. 293-298, 2001
[17] Bin-Hong Liu, Dong-Myung Kim, Ki-Young Lee“Hydrogen storage
properties of TiMn2-based alloys”, J.Alloy Comp, Vol. 240 , pp.214-218 ,1996
[18] Xiumei GUO,Erdong WU, “Hydrogen storage properties of
Laves phase Ti1-xZrx(Mn0.5Cr0.5)2 alloys”, Rare Metal, Vol.25 ,pp.218-223, 2006
[19] N. Rajalakshmi1, K. S. Dhathathreyan, “Hydrogen solubility
properties of Ti0.42Zr0.08Fe0.50 alloy”, Int. J. Hydrogen Energy, Vol. 24, Issue 7, pp, 625-629, 1991
[20] J.R. Ares, F. Cuevas , A. Percheron-Guégan,“Mechanical milling and
subsequent annealing effects on the microstructural and hydrogenation properties of multisubstituted LaNi5 alloy” Acta Materialia, Vol.53, Issue 7, pp. 2157-2167, April 2005
[21] S. -M. Lee and T. -P. Perng, “Correlation of substitutional solid solution with hydrogenation properties of TiFe1-xMx (M=Ni, Co, Al) alloys”J.Alloy Comp. Vol. 291, pp. 254-261 , 1999
[22] T.H. Jang, J.I. Han, “Effect of substitution of titanium by zirconium in TiFe on hydrogenation properties” J. Less-Common Met., Vol. 119, pp.237-246, 1986
[23] X. Wang, R.Chen, “hydrogen storage properties of TixFe+y wt.% La and its use in metal hydride hydrogen compressor” J.Alloy Comp. Vol. 425, pp. 291-295 , 2006
[24] S. -M. Lee and T. -P. Perng, “Microstructures and hydrogenation properties of TiFe1-xMx alloys”J.Alloy Comp. Vol. 182, pp. 47-59 , 1992
[25] S. -M. Lee and T. -P. Perng, “Microstructures correlations with the hydrogenation kinetics of FeTi1+x alloys”J.Alloy Comp. Vol. 177, pp. 107-118 , 1991
[26] S. -M. Lee, T. -P. Perng, “Effects of boron and carbon on the hydrogenation properties of TiFe and Ti1.1Fe” Int. J. Hydrogen Energy, Vol. 25, pp.831-836,2000
[27] S. -M. Lee and T. -P. Perng, “Effect of the second phase on the initiation of hydrogenation of TiFe1-xMx (M=Cr,Mn)alloys” Int. J. Hydrogen Energy, Vol. 19, pp.259-263, 1994
[28] H. Nagai, K. Kitagaki, “Microstructure and hydriding characteristics if FeTi alloys containing manganese” J. Less-Common Met., Vol. 134, pp.257-286, 1987
[29] G. Bruzzone, G.Costa,“Hydrogen storage in aluminium-substituted TiFe compounds”, Int. J. Hydrogen Energy, Vol. 6, Issue 7, pp. 181-184, 1980
[30] H. Miyamura, M. Takada,“Metal hydride electrodes using titanium-iron-based alloys”J.Alloy Comp. pp. 755-758 , 2003
[31] Klyamkin S. N, Verbetsky V. N “Thermodynamics of hydride
formation and decomposition for TiMn2-H2 system at pressure up to 2000 atm”J.Less-common Met, Vol.205, L1, 1994
[32] B. K. Singh, A. K. Singh, A. M. Imam, O. N. Srivastava, “On the
Structural Characteristics and Hydrogenation Behaviour of TiMn1.5 Hydrogen Storage Material”, Int. J. Hydrogen Energy, Vol.26, pp.817-821, 2001.
[33] Y. Moriwaki, T. Gamo, T. Iwaki, “Control of hydrogen equilibrium pressure for C14-type laves phase alloys”, J. Less-Common Met., Vol. 172, pp.1028-1035, 1991.
[34] Y. Kojima, Y. Kawai, “Development of metal hydride with high dissociation pressure ”J.Alloy Comp. Vol. 419, pp. 256-261 , 2006
[35] J.L. Bobet and B. Darriet,“Relationship between hydrogen sorption
properties and crystallography for TiMn2 based alloys ” Int. J. Hydrogen Energy , Vol. 25, pp. 767–772, 2000
[36] M. Au, F. Pourarian, S.G. Sankar, W.E. Wallace L.Zhang, “TiMn2-
based alloys as high hydrogen storage materials ” Mater. Sci. Eng. B33 ,1995
[37] P. Raj, A. Satyamoorthy, “Hydriding behaviour of FeTi and FeTi1.5: Ease of activation and skipping of β region” J. Less-Common Met., Vol. 130, pp.139-145, 1987
[38] J.G. Park, H.Y. Jang, S.C. Han, “The thermodynamic properties of Ti–Zr–Cr–Mn Laves phase alloys” J.Alloy Comp. Vol. 325, pp. 293-298 , 2001
[39] E. Akiba, H. Iba, “Hydrogen absorption by Laves phase related BCC solid solution” , Intermetallics, Vol.6, pp.461-470, 1998
[40] J.J. Reilly, R.H. Wiswall, “Higher hydrides of vanadium and niobium” Inorg.Chem., Vol. 9, pp.1678-1682, 1970
[41] S.Ono, K. Noura, “The reaction of hydrogen with alloys of vanadium and titanium” J. Less-Common Met., Vol. 72, pp.159-165, 1980
[42] S.W. Cho, S.C. Han, “The hydrogen storage characteristics of Ti–V–Cr alloys” J.Alloy Comp. Vol. 288, pp. 294-298 , 1999
[43] X.B. Yu, Z.Wu, N.X. Xu, “Enhancemant of hydrogen storage capacity of Ti-V-Mn-Cr BCC phase alloys” J.Alloy Comp. Vol. 372, pp. 272-277 , 2004
[44] Y.Yan, Y. Chen, H. Liang, “Hydrogen storage properties of V30-Ti–Cr–Mn alloys” J.Alloy Comp. Vol. 427, pp. 110-114 , 2007
[45] Y.Yan, Y. Chen, H. Liang, “Effect of Al content on hydrogen storage properties of V30Ti35Cr35Fe10 alloys” J.Alloy Comp. Vol. 426, pp. 253-255 , 2006
[46] X.B. Yu, J.Z.Chen, N.X. Xu, “Effect of Cr content on hydrogen storage properties for Ti-V-Based BCC-phase alloys” Int.J.Hydrogen Energy. Vol. 29, pp. 1377-1381, 2004
[47] R.Guo, L,X,Chen, Y.Q.Lei, Q.D.Wang, “Phase structures and electrochemical behaviors of V2.1TiN0.5Hf0.05Crx (x=0-0.152) hydrogen storage alloys” J.Alloy Comp. Vol. 426, pp. 253-255 , 2006
[48] C.Y.Seo, J.H.Kim, P.S.Lee, J.Y.Lee, “Hydrogen storage properties of vanadium-based b.c.c solid solution metal hydrides” J.Alloy Comp. Vol. 348, pp. 252-257 , 2003
[49] K. P. Gupta, “The Fe-Ni-Ti system update (Iron-Nickel-Titanium)” J. Phase Equilibria and Diffusion. Vol. 22, pp. 171-175 , 2001
[50] N. Yasuda, R. Wakabayashi, “Self-ignition combustion synthesis of TiFe1-xMnx hydrogen storage alloy” Int.J.Hydrogen Energy. Vol. 34, pp. 9122-9127, 2009
[51] N. Yasuda, R. Wakabayashi, “Self-ignition combustion synthesis of TiFe1-xNix hydrogen storage alloy” J.Alloy Comp.. Vol. 484, pp.682-688, 2009
[52]T. Tamura, Y.Tominaga, “Alloying effects on the stability of vanadium hydrides” J.Alloy Comp.. Vol. 330-332, pp.105-109, 2002
[53]H. Yukawa, M.Takagi, “Protium absorption properties of Ti-V-Cr-Mn alloys with a b.c.c strucure” J.Alloy Comp.Vol. 330-332, pp.522-525, 2002
指導教授 李勝隆(Sheng-long Lee) 審核日期 2010-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明