以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:27 、訪客IP:18.116.12.7
姓名 蘇建豪(Chien-Hao Su) 查詢紙本館藏 畢業系所 化學工程與材料工程學系 論文名稱 以表面處理控制自發性晶鬚生長及殘留應力對晶鬚生長動力學之影響
(Control of Spontaneous Tin Whisker Growth by Surface Treatment and the Effect of Residual Stress on Growth Kinetics)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 電子封裝產業利用電鍍方式將錫薄膜鍍製銅導線架的表面,因銅與錫反應生成之介金屬化合物(Cu6Sn5)會於錫薄膜中產生壓應力,應力藉由自發性錫晶鬚生長釋放。晶鬚可能造成短路或因尖端放電形成火花,而劣化電子元件之可靠度,故研究晶鬚成長機制及其抑制方法為一重要課題,但因生長位置難以預測,造成研究之困難。本論文嘗試控制晶鬚生長位置,利用微影技術與濺鍍方式於錫薄膜表面創造圓形陣列的氧化層弱點,成功控制錫晶鬚僅可見於弱點區域,再以電子顯微鏡觀察並追蹤錫晶鬚於不同退火時間下的尺度變化,可計算錫晶鬚實際生長速率。實驗中利用同步輻射X光精準量測薄膜之殘留應力,並利用數學模型探討薄膜應力與晶鬚成長之動力學。
本實驗亦改變表面弱點之密度,欲探究氧化層之緻密性與晶鬚生長之關係,研究結果呈現晶鬚之總體積不因表面氧化層的狀態改變,但其長度與弱點密度成反比,實驗進一步以聚焦離子束及電子顯微鏡量測介金屬化合物之體積,證實晶鬚與介金屬化合物之生長習習相關,且皆為與反應時間之平方根(t1/2)成正比。
由於在錫/銅界面鍍製鎳-磷金屬阻障層為一常見之抑制晶鬚生長的方法,本實驗亦結合表面弱點與應力量測探究其原因。實驗發現錫/鎳-磷界面緩慢生成平板狀的介金屬化合物(Ni3Sn4),使其殘留應力非常小,從表面形貌觀測得知錫/鎳-磷系統的確無生長晶鬚。
由本論文之結果可知,表面氧化層越不緻密,可有效減少長而有害之晶鬚生長,降低元件損壞之風險,利用微結構觀察與晶鬚形貌之量測,推導出一晶鬚生成之數學模型:晶鬚指數,可提供研究晶鬚成長之基礎,亦可供業界於元件設計之參考。摘要(英) In electronic package industry, the spontaneous growth of whiskers on tin thin films poses a threat to the reliability of electronic devices. These whiskers are produced by the continuous generation and relaxation of compressive stresses within the tin. The primary driving forces involved in Sn thin films grow on a Cu leadframe are the formations of intermetallic compounds (IMCs) resulting from the reaction between Cu and Sn and a dense oxide layer on Sn surfce. This study sought to overcome the unpredictable nature of whisker growth and achieve accurate quantitative analysis of the growth kinetics. The purpose of this research was to control the location of whisker growth, which occurs in the weak spots created by the lithographic processes associated with the application of tin oxide coatings. Scanning Electron Microscopy (SEM) was adopted to examine each whisker at every step to record the dimensions at different annealing time to calculate the real growth rate of whisker. This study employed synchrotron radiation X-ray diffractometery to identify variations in stress associated with whisker growth that fitted appropriately to the mathematical model. The results of this study could prove that the formation of a surface oxide layer is a necessary condition for controlling where whisker growth will occur.
We also investigated the relationship between cracks in the surface oxide layer and the growth of whiskers. The results represented that total volume of whisker growth was independently of the interval between weak spots. But the length of whisker and density of weak spots on surface oxide were disproportionate. This study employed statistical methods based on focused ion beam (FIB) observation to characterize the relationship between the total volume of the whisker growth and Cu6Sn5 IMCs. These results clearly demonstrate that the growth of whisker was the square root of annealing time (t1/2).
Our results verify the effectiveness of a Ni-P underlayer as a barrier to the inter-diffusion between Sn film and a Cu substrate that was a general mitigated method for whisker growth. The combination of weak spots on surface and measurement of residual stress were studied in the experimental. The results presented thin and layered Ni3Sn4 IMCs grew only and the residual stress was very small. As a result, no whisker growth occurred in the Sn/Ni-P/Cu specimens.
The creation of a weak oxide layer or taking steps to prevent the formation of intermetallic compounds could be very important for reducing the threat of short circuit. A “Whisker Index” was proposed to evaluate the effect of microstructure and surface treatments on the kinetics of whisker growth for providing the fundamental knowledge of whisker growth and the future design of devices.關鍵字(中) ★ 錫晶鬚
★ 同步輻射
★ 介金屬化合物關鍵字(英) ★ Tin whisker
★ synchrotron radiation
★ intermetallic compounds論文目次 Contents
Abstract (in Chinese) I
Abstract (in English) II
Acknowledgement IV
Contents…………………………………………………………………………… V
List of Figures…………………………………………………………………… VII
List of Tables………………………………………………………………………XI
Chapter 1 Introduction ……………………………………………………………………………1
1.1 Background …………………………………………………………………………… 1
1.2 History …………………………………………………………………………… 3
1.3 The Influencing Factors for Tin Whisker Growth…………………………………………………………………………… 6
1.3.1 Orientation…………………………………………………………………………… 6
1.3.2 Intermetallic compound of Cu6Sn5……………………………………………………………………………8
1.3.3 Stress……………………………………………………………………………9
1.3.4 Surface oxide……………………………………………………………………………12
1.4 Reviews of Growth Mechanisms for Tin Whisker……………………………………………………………………………13
1.5 Mitigation of Tin Whisker Growth……………………………………………………………………………15
1.5.1 Heat treatment……………………………………………………………………………15
1.5.2 Increased tin thickness……………………………………………………………………………16
1.5.3 Diffusion barrier……………………………………………………………………………19
1.5.4 Alloying effect……………………………………………………………………………20
1.5.5 Surface treatment……………………………………………………………………………21
Chapter 2 Motivations……………………………………………………………………………22
Chapter 3 Experimental……………………………………………………………………………24
3.1 Experimental Procedure……………………………………………………………………………24
3.1.1 Sample preparation……………………………………………………………………………24
3.1.2 Creating different density of the weak oxide spots……………………………………………………………………………26
3.1.3 Ni-P as diffusion barrier ……………………………………………………………………………26
3.2 Residual Stress by sin2Ψ Method……………………………………………………………………………28
Chapter 4 Results and Discussions……………………………………………………………………………31
4.1 Controlled Positions and Kinetic Analysis of Spontaneous Tin Whisker Growth……………………………………………………………………………31
4.1.1 Oxide layer……………………………………………………………………………31
4.1.2 Controlled positions of whisker growth……………………………………………………………………………33
4.1.3 The measurement of the geometry for the whiskers……………………………………………………………………………35
4.1.4 Residual stress for calibration of the growth model……………………………………………………………………………39
4.1.5 Diffusivity of tin atom……………………………………………………………………………44
4.2 Effect of the Intervals of Weak Spots on Whisker Growth……………………………………………………………………………45
4.2.1 The morphology of tin surface……………………………………………………………………………45
4.2.2 The behaviors of whisker growth……………………………………………………………………………47
4.3 Effect of Cu and Ni-P Substrates on Whisker Growth……………………………………………………………………………56
4.3.1 Morphology of tin thin film……………………………………………………………………………56
4.3.2 Morphology of intermetallic compounds……………………………………………………………………………58
4.3.3 Measurement of residual stress……………………………………………………………………………62
4.3.4 Incubation time and stress……………………………………………………………………………65
4.3.5 Effect of intermetallic compound……………………………………………………………………………69
4.4 Kinetics of Whisker Growth ……………………………………………………………………………71
4.4.1 The total volume of Cu6Sn5 IMC……………………………………………………………………………71
4.4.2 Whisker Index……………………………………………………………………………77
Chapter 5 Conclusions……………………………………………………………………………92
Reference…………………………………………………………………………… 94
List of Figures
Figure 1.1 1 The tin whisker growth properly happened in different industries[3, 4, 8]……………………………………………………………………………2
Figure 1.2 1 Timeline of research into whisker growth……………………………………………………………………………5
Figure 1.3 1 Schematic image of a cross-section showing the orientation of awhisker and grains in Sn film [18]……………………………………………………………………………6
Figure 1.3 2 Schematic diagram representing the influence of oxidation on whisker growth [42]……………………………………………………………………………12
Figure 1.4 1 Sketch presenting cross-section of the bimetallic Cu-Sn thin films forming Cu6Sn5 and a whisker [27]……………………………………………………………………………14
Figure 1.5 1 FIB cross-sections of matte Sn films on Cu substrates after aging at room temperature for several months: (Top) Sample I as-deposited and aged; (Bottom) Sample II Post-baked and aged [47]……………………………………………………………………………16
Figure 1.5 2 Relationship between the thickness of the coating and whisker density for various Sn (Cu) alloys [49]……………………………………………………………………………17
Figure 1.5 3 Measurements of the development of IMC volume, Sn stress, and whisker density related with different thickness of Sn film:(a)-(c) 1450 nm, (b)2900 nm, and (g)-(i) 5800 nm. [50]……………………………………………………………………………18
Figure 1.5 4 Plane-view SEM images of samples without and with Ni underlayer at interface between Sn film and Cu substrate following annealing at room temperature [50]……………………………………………………………………………19
Figure 1.5 5 SEM images and schematic figures of various surface treatments and their effects on whisker growth……………………………………………………………………………21
Figure 3.1 1 The flowchart for controlled positions of Spontaneous tin whisker growth by using lithographic process……………………………………………………………………………25
Figure 3.1 2 SEM micrograph of cross-section of the Sn/Ni-P/Cu multilayer specimen……………………………………………………………………………27
Figure 3.2 1 Sketch of a polycrystalline sample subjected to uniaxial compressive stress parallel to the surface. The direction of strain is the direction of the diffraction vector, identified by angle Ψ, which denotes the inclination angle of the specimen surface normal……………………………………………………………………………29
Figure 3.2 2 Schematic diagram of diffraction geometry using synchrotron radiation X-ray diffractometery……………………………………………………………………………29
Figure 4.1 1 Plan-view SEM images: (a) prior to removal of photoresist; (b) following removal of photoresist……………………………………………………………………………32
Figure 4.1 2 Comparison of self-grown SnOx (x=2) layer and deposited SnOx (x=1) layer……………………………………………………………………………32
Figure 4.1 3 The SEM image of (a) as-deposited (b) after 3 days (c) the whisker of no.3 compared with 3 days and 25 days……………………………………………………………………………34
Figure 4.1 4 The history of No.16 whisker on tilted 30o stage was traced by using SEM at 40 oC with varied annealing time……………………………………………………………………………36
Figure 4.1 5 The sketch of the SEM observe and how calculating the growth rate of whisker by using trigonometric method……………………………………………………………………………37
Figure 4.1 6 A comparison of the growth rate from Eq. (4.1-2) and the experimental measurement……………………………………………………………………………38
Figure 4.1 7 The residual stress in the tin film at different annealing times……………………………………………………………………………39
Figure 4.1 8 The schematic diagrams of residual stress of the models are respectively as-deposited and after annealing for 4 days……………………………………………………………………………40
Figure 4.1 9 A comparison of the corrected growth rate from Eq. (4.1-2) and the experimental measurement……………………………………………………………………………43
Figure 4.1 10 The diffusivities of our system compared with references……………………………………………………………………………44
Figure 4.2 1 Images showing morphology in 20-50 and 20-100 samples: (a) and (c) as-deposited; (b) and (d) after annealing for 4 days. The inserts in (b) and (d) present magnified images of a single whisker that grew in a predetermined location……………………………………………………………………………46
Figure 4.2 2 (a) Number of whiskers; (b) comparison of the average length and the average diameter of whiskers that grew from the two patterns……………………………………………………………………………48
Figure 4.2 3 Average residual stress in 20-50 and 20-100 samples, as measured by synchrotron radiation X-ray microscopy……………………………………………………………………………50
Figure 4.2 4 Diffusivity values, as calculated using the model presented by Tu……………………………………………………………………………52
Figure 4.2 5 Total volume of whiskers that grew in 20-50 and 20-100 samples……………………………………………………………………………54
Figure 4.2 6 Schematic diagram showing growth behavior of whiskers in (a) 20-50 sample and (b) 20-100 sample……………………………………………………………………………55
Figure 4.3 1 Morphological images of samples with 20-50 and 20-100 patterns: (a), (b) without Ni-P underlayer and (c), (d) with Ni-P underlayer at interface between Sn film and Cu substrate, following annealing at 40 °C for 4 days……………………………………………………………………………57
Figure 4.3 2 FIB micrograph showing a cross-section of (a) the Sn/Cu specimen stored at 40 °C for 45 days (b) the Sn/Ni-P/Cu specimen stored at 40 °C for 80 days. Few precipitates of Ni3Sn4 were observed at the interface between the Sn film and Cu substrate……………………………………………………………………………59
Figure 4.3 3 X-ray diffraction analysis of Sn/Ni-P/Cu and Sn/Cu specimens……………………………………………………………………………60
Figure 4.3 4 EPMA element mapping and BSE patterns in Sn/Ni-P/Cu specimen……………………………………………………………………………60
Figure 4.3 5 Average residual stresses of (a) Sn/Cu and (b) Sn/Ni-P/Cu specimens, as measured by synchrotron radiation X-ray microscopy……………………………………………………………………………63
Figure 4.3 6 SEM image showing the formation of the first whisker in Sn film without weak spots at the 3rd day of annealing at 40 oC……………………………………………………………………………66
Figure 4.3 7 Residual stress in Sn film without weak spots……………………………………………………………………………67
Figure 4.3 8 Schematic diagram of mechanisms involved in whisker formation……………………………………………………………………………68
Figure 4.4 1 Cross-sectional image of 20-50 patterns following annealing for various durations……………………………………………………………………………72
Figure 4.4 2 Cross-sectional image of 20-100 patterns following annealing for various durations……………………………………………………………………………72
Figure 4.4 3 Total volume of whisker growth and Cu6Sn5 IMCs at grain boundaries of Sn film: (a) 20-50 and (b) 20-100 samples……………………………………………………………………………74
Figure 4.4 4 Thickness of Cu6Sn5 IMCs with 20-50 and 20-100 patterns……………………………………………………………………………75
Figure 4.4 5 Thickness of Cu6Sn5 as a function of annealing time1/2 in (a) 20-50 and (b) 20-100 samples……………………………………………………………………………77
Figure 4.4 6 Total volume of whisker growth and Cu6Sn5 IMCs: (a) 20-50 and (b) 20-100 samples……………………………………………………………………………78
Figure 4.4 7 Total volume of whisker growth as calculated from experimental and model: (a) 20-50 and (b) 20-100 samples ……………………………………………………………………………83
Figure 4.4 8 Average length of whisker growth versus the annealing time1/2: (a) 20-50 and (b) 20-100 samples……………………………………………………………………………86
Figure 4.4 9 (a) A schematic diagram of the cross-sectional view of microbumps. (b) SEM image showed that whiskers of Sn formed on cap surface after storage at room temperature for a while……………………………………………………………………………89
Figure 4.4 10 The prediction of how long of annealing time could induce one long whisker contact neighboring microbump for causing device failure……………………………………………………………………………91
List of Figures
Table 1.3 1 Summary of whisker growth direction and orientation of grain and film ……………………………………………………………………………7
Table 4.1 1 The residual stress of our data and reference [34] are compared……………………………………………………………………………42
Table 4.4 1 List of parameters including thicknesses, grain sizes of Sn film, volume of IMC, and whisker density. (Here, we take the both values of volume of IMC and whisker density for annealing 100 hours as example in this study.)……………………………………………………………………………88
?
參考文獻 Reference
[1] R.M. Fisher, L.S. Darken and K.G. Carrol, “Accelerated Growth of Tin Whiskers”, Acta Metall., 2, 3, 368-372 (1954).
[2] Y. Hada, O. Morikawa, and H. Togami, “Study of Tin Whiskers on Electromagnetic Relay Parts”, Proc. of the 26th Annual Relay Conference at Oklahoma State University, Stillwater, Oklahoma, pp. 9-1 to 9-15 (1978).
[3] “Satellite News Digest, HS 601 Satellite Failure” http://nepp.nasa.gov/whisker/failures/
[4] B. Sood, M. Osterman and M. Pecht, “Tin Whisker Analysis of Toyota’s ElectronicThrottle Controls”, Circuit World , 37, 3, 4–9 (2011).
[5] S. M. Arnold, “The Growth of Metal Whisker on Electrical Components”, Proc. of the IEEE Elec. Comp. Conf., 75-82 (1959).
[6] S.M. Arnold, “Repressing the Growth of Tin Whiskers”, Plating, 53(1), 96-99 (1966).
[7] Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment. Official Journal of the European Union L37, 19 (2003).
[8] C.C. Wei, P.C. Liu, J. C.B. Lee, I.P. Wang and C. Chen, “Relieving Sn Whisker Growth Driven by Oxidation on Cu Leadframe by Annealing and Reflowing Treatments”, J. Appl. Phys., 102, 043521 (2007)
[9] S.W. Liang, C.Chen, J.K. Han, L. Xu, K.N. Tu and Y.-S. Lai, “Blocking Hillock and Whisker Growth by Intermetallic Compound Formation in Sn-0.7Cu Flip Chip Solder Joints under Electromigration”, J. Appl. Phys., 107, 093715 (2010).
[10] K.N. Tu, “Reliability Challenges in 3D IC Packaging Technology”,Microelectron. Reliab., 51, 3, 517-523(2011).
[11] M. W. Barsoum, E. N. Hoffman, R. D. Doherty, S. Gupta and A. Zavaliangos, “Driving Force and Mechanism for Spontaneous Metal Whisker Formation”, Phys. Rev. Lett., 93, 206104 (2004).
[12] B.-Z. Lee and D. N. Lee, “Spontaneous Growth Mechanism of Tin Whiskers”, Acta Metall., 46, 3701 (1998).
[13] J. W. Osenbach, J. M. DeLucca, B. D. Potteiger, A. Amin, R. L. Shook and F. A. Baiocchi, “Sn Corrosion and Its Influence on Whisker Growth”, IEEE Trans. Electron. Packag. Manuf., 30, 23 (2007).
[14] J. Cheng, P. T. Vianco, B. Zhang and J. C. M. Li, “Nucleation and Growth of Tin Whiskers”, Appl. Phys. Lett. 98, 241910 (2011).
[15] A.T. Wu and Y.C. Ding, “The Suppression of Tin Whisker Growth by the Coating of Tin Oxide Nano Particles and Surface Treatment”, Microelectron. Reliab., 49, 318–322 (2009).
[16] C.-H. Su, H. Chen, H.-Y. Lee and A.T. Wu, “Controlled Positions and Kinetic Analysis of Spontaneous Tin Whisker Growth”, Appl. Phys. Lett., 99, 131906 (2011).
[17] K.N. Tu and R.D. Thompson, “Kinetics of Interfacial Reaction In Bimetallic CuSn Thin Films”, Acta Metall., 30, 947 (1982).
[18] W.J. Choi, T.Y. Lee, K.N. Tu, N. Tamura, R.S. Celestre, A.A. MacDowel, Y.Y. Bong and L. Nguyen, “Tin Whiskers Studied by Synchrotron Radiation Scanning X-ray Micro-diffraction”, Acta Mater., 51, 6253 (2003).
[19] H.L. Cobb,“Cadmium whiskers”, Monthly Rev. Amer. Electroplaters Soc., 33, 28, 28-30 (1946).
[20] J.D Eshelby, “A Tentative Explanation of the Accelerated Growth of Tin Whiskers”, Phys. Rev., 91, 755-756 (1953).
[21] H.G. Smith and R.E. Rundle, “X-ray Investigation of Perfection in Tin Whiskers”, J. Appl. Phys., 29, 4, 679-683 (1958).
[22] W.C. Ellis, D.F. Gibbons and R.C. Treuting, “Growth of Metal Whisker from the Solid, in Growth and Perfection of Crystals”, R.H. Doremus, B.W. Roberts, and D. Turnbull, Eds. New York:Wiley, pp. 102-120 (1958).
[23] S.M. Arnold, “The Growth and Properties of Metal Whisker”, Proc. 43rd Annual Convention of the American Electroplater’s Soc., pp. 26-31 (1956).
[24] V.K. Glazunova and N.T. Kudryavtsev, “An Investigation of the Conditions of Spontaneous Growth of Filiform Crystals on Electrolytic Coatings”, translated from Zhurnal Prikladnoi Khimii, 36(3): 543-550 (1963).
[25] K. N. Tu, “Interdiffusion and Reaction in Bimetallic Cu-Sn Thin Films”, Acta Metall., 21, 4, 347-354 (1973).
[26] B.D. Dunn, “Metallurgy and Reliability in Spacecraft Electronics”, Metal and Materials, 34, 32-40 (1975).
[27] K.N. Tu, “Irreversible Processes of Spontaneous Whisker Growth in Bimetallic Cu-Sn Thin Film Reactions”, Phys. Rev. B, 49, 3, 2030-2034 (1994).
[28] P. Sarobol, J.E. Blendell and C.A. Handwerker, “Whisker and Hillock Growth via Coupled Localized Coble Creep, Grain Boundary Sliding, and Shear Induced Grain Boundary Migration”, Acta Mater., 61, 1991-2003 (2013).
[29] R. Schetty, “Whisker Growth Studies”, Proc. of the IPC Annual Meeting and Technical Conf., pp. S03-7-1 to S03-7-4 (2001).
[30] A. Frye, G.T. Galyon and L. Palmer,“Crystallographic Texture and Whisker in Electrodeposited Tin Film”, IEEE Trans. Electron. Packag. Manuf., 30, 1, 2-10 (2007).
[31] P. Sarobol, A.E. Pedigo, P. Su, Senior Member, IEEE, J.E. Blendell and Carol A. Handwerker, “Defect Morphology and Texture in Sn, Sn–Cu, and Sn–Cu–PbElectroplated Films” , IEEE Trans. Electron. Packag. Manuf., 33, 3, 159-164 (2010).
[32] F. Pei, N. Jadhav and E. Chason, “Correlation Whisker Growth and Grain Structure on Su-Cu Samples by Real-time Scanning Electron Microscopy and Backscattering Diffraction Characterization”, Appl. Phys. Lett., 100, 221902 (2012).
[33] G.T.T. Sheng, C. F. Hu , W. J. Choi, K. N. Tu, Y. Y. Bong and L. Nguyen, “Tin Whiskers Studied by Focused Ion Beam Imaging and Transmission Electron Microscopy”, J. Appl. Phys., 92 ,1 ,64-69 (2002).
[34] M. Sobiech, U. Welzel, E.J. Mittemeijer, W. Hugel and A. Seekamp, “Driving Force for Sn Whisker Growth in the System Cu-Sn”, Appl. Phys. Lett., 93, 011906 (2008).
[35] W. Zhang, A. Egli, F. Schwager and N. Brown, “Investigation of Sn-Cu Intermetallic Compounds by AFM : New Aspects of the Role of Intermetallic Compounds in Whisker Formation” , IEEE Trans. Electr. Pack. Manufact., 28 ,1 , 85-93 (2005).
[36] G.T. Galyon and L. Palmer, “An Integrated Theory of Whisker Formation: The Physical Metallurgy of Whisker Formation and the Role of Internal Stresses”, IEEE Trans. Electron. Packag. Manuf., 28, 1, 17-30 (2005).
[37] K.N. Tu and J. C. M. Li, “Spontaneous whisker growth on Lead-free Solder Finishes”, Mater. Sci. Engineering A, 409, 131-139 (2005).
[38] K.N. Tu, C. Chen, and A.T. Wu, “Stress Analysis of Spontaneous Sn whisker Growth”, J. Mater. Sci.: Mater. Electron., 18, 269-281 (2007).
[39] W.J. Boettinger, C.E. Johnson, L.A. Bendersky, K.-W. Moon, M.E. Williams and G.R. Stafford, “Whisker and Hillock Formation on Sn, Sn-Cu and Sn-Pb Electrodeposits”, Acta Mater., 53, 5033-5050 (2005).
[40] A. Baated, K.-S. Kim and K. Suganuma,“Effect of Intermetallic Growth Rate on Spontaneous Whisker Growth from a Tin Coating on Copper”, J. Mater. Sci.: Mater. Electron., 22, 1685-1693 (2011).
[41] K.N. Tu,“Cu/Sn Interfacial Reactions: Thin-film Case Versus Bulk Case”, Mater. Chem. Phys., 46, 217-223 (1996).
[42] P. Oberndorff, M. Dittes, P. Crema, P. Su and E. Yu, “Humidity Effects on Sn Whisker Formation”, IEEE Trans. Electron. Packag. Manuf., 29, 239 (2006).
[43] K.W. Moon, C.E. Johnson, M.E. Williams, O. Kongstein, G.A. Stafford, C.A. Handwerker and W.J. Boettinger, “Observed Correlation of Tin Oxide Film to Tin Whisker Growth Sn-Cu electrodeposits for Pb-dree Solders”, J. Electron. Mater., 34 ,9, L31-L33, (2005).
[44] K. Suganuma, A. Baated, K.-S. Kim, K. hamasaki, N. Nemoto, T. Nakagawa and T. Yamada, “Sn Whisker Growth During Thermal Cycling”, Acta Mater., 59, 7255-7267 (2011).
[45] M.O. Peach, “Mechanism of Growth of Whiskers on Cadmium”, J. Appl. Phys., 23 , 12, 1401-1403 (1952).
[46] B.D. Dunn, “A Laboratory Study of Tin Whisker Growth”, Europen Space Agency (ESA) STR-223, 1-50 (1987).
[47] M. Sobiech, U. Welzel, R. Schuster, E. J. Mittemeijer, W. Hugel, A. Seekamp and V. Muller , “The Microstructure and State of Stress of Sn Thin Films after Post-Plating Annealing: An Explanation for the Suppression of Whisker Formation” , Proceedings of the 57th Electronic Components and Technology Conference, ECTC ’07 , pp. 192–197 (2007).
[48] K.-S. Kim, J.-H. Kim and S.-W. Han, “The Effect of Postbake Treatment on Whisker Growth under High Temperature and Humidity Conditions on Tin-plated Cu Substrates”, Mater. Lett., 62, 1867-1870 (2008).
[49] H.J. Kao, W.C. Wu, S.T. Tsai and C.Y. Liu, “Effect of Cu Additives on Sn Whisker Formation of Sn(Cu) Finishes”, J. Electron. Mater., 35, 10, 1885-1891 (2006).
[50] N. Jadhav, E. J. Buchovecky, L. Reinbold, S. Kumar, A.F. Bower and E. Chason, “Understanding the Correlation between Intermetallic Growth, Stress Evolution, and Sn Whisker Nucleation”, IEEE Trans. Electron. Packag. Manuf., 33, 3, 183-192, (2010).
[51] C. Xu, C. Fan, A. Vysotskaya, J.A. Abys and Y. Zhang, “Understanding Whisker Phenomenon- Part II Competitive Mechanisms”, Proceedings of the 2001 AESF SUR/FIN Conference (2001).
[52] Y.-W. Yen, W.-K. Liou and C.-C. Jao, “Investigation of Interfacial Reactions and Sn Whisker Formation in the Matte Sn Layer with NiP/Ni/Cu and Ni/Cu Multilayer Systems”, IEEE Trans. Electron. Packag. Manuf.,1, 6, 951-956 (2011).
[53] M. Sobiech, J. Teufel, U. Welzel, E. J. Mittemeijer and W. Hugel, “Stress Relaxation Mechanisms of Sn and SnPb Coatings Electrodeposited on Cu: Avoidance of Whiskering”, J. Electron. Mater., 40, 11, 2300 (2011).
[54] J.-L. Jo, K.-S. Kim, T. Sugahara, S. Nagao, K. Hamasaki, M. Tsuijmoto and K. Suganuma,“Least Lead Addition to Mitigate Tin Whisker for Ambient Storage”, J. Mater. Sci: Mater. Electron., 24, 3108-3115 (2013).
[55] C.-Y. Ko and A.T. Wu, “Evaluation of Diffusion Barrier Between Pure Sn and Te”, J. Electron. Mater., 41, 12, 3320 (2012).
[56] C.-H. Ma, J.-H. Huang and H. Chen, “Residual Stress Measurement in Textured Thin Film by Grazing-incidence X-ray Diffraction”, Thin Solid Films, 418, 73-78 (2002).
[57] U. Welzel, J. Ligot, P. Lamparter, A.C. Vermeulen and E.J. Mittermeijer, “Stress Analysis of Polycrystalline Thin Films and Surface Regions by X-ray Diffraction” , J. Appl. Crystllogr., 38 , 1 (2005).
[58] A. T. Wu and Y. C. Hsieh, “Direct Observation and Kinetic Analysis of Grain Rotation in Anisotropic Tin under Electromigration”Appl. Phys. Lett. 92, 121921 (2008).
[59]P. Singh and M. Ohring, “Tracer Ttudy of Diffusion and Electromigration in Thin Tin Films”, J. Appl. Phys. 56, 899 (1984).
[60] K. Tsuji, “Study on the Mechanism of Sn Whisker Growth: Part I”, Journal of The Surface Finishing Society of Japan, 57, 451 (2006).
[61] J. Cheng, S. Chen, P.T. Vianco and J.C.M. Li, “A New Mechanism for Hillock Formation over Electrodeposited Thin Tin Film”, ECTC Conference, 472 (2008).
[62] A. Einstein, “On the Movement of Small Particles suspended in Stationary Liquids Required by the Molecular-kinetic Theory of Heat”, Ann. Phys., 322, 549 (1905).
[63] Y.-D. Jeon, K.-W. Paik, K.-S. Bok, W.-S. Choi and C.-L. Cho, in Electronic Components & Technology Conference, IEEE, 29, 1326-133 (2001).
[64] Y.-J. Chen and C.-M. Chen,“Mitigative Tin Whisker Growth under Mechanically Applied Tensile Stress”, J. Electron. Mater, 38, 3, 415 (2009).
[65] C. Xu, Y. Zhang, C. Fan and J.A. Abys, “Understanding Whisker Phenomenon: Driving Force for Whisker Formation”, CircuiTree 15, 10 (2002).
[66] M. Sobiech, M. Wohlschlogel, U. Welzel, E. J. Mittemeijer, W. Hugel, A. Seekamp, W. Liu and G. E. Ice,“Local, Submicron, Strain Gradients as the Cause of Sn Whisker Growth”, Appl. Phys. Lett., 94, 221901 (2009)
[67] K.N. Tu, H.-Y. Hsiao and C. Chen, “Transition from Flip Chip Solder Joint to 3D IC Microbump: Its Effect on Microstructure Anisotropy”, Microelectron. Reliab.,
53, 2-6 (2013).指導教授 吳子嘉 審核日期 2014-5-1 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare