博碩士論文 973204013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:18.118.252.38
姓名 汪璞芸(Pu-Yun Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究
(Screening, Manufacturing, Characterization, Molecular Recognition and Applications of Co-crystals: Cytosine with Dicarboxylic Acids )
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究
★ 蔗糖的同質異構型構★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選
★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度
★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選
★ 生命的起源與天門冬氨酸在水中的結晶★ 微調具光學活性聯二萘酚和其二甲亞碸包合物的光激發光性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 晶體材料從固體中分子的排列,及改變分子之間位置和/或相互作用,其通常對一特定固體的特性有直接影響,藉以獲得基本的物理特性。該晶體形式的多樣性驅動獨特的物化性質。固體形式的發現和設計取決於感興趣分子的性質和其在發展上面臨各種物性的挑戰。
結晶工程已發展出以自組裝現有分子的方式產生廣泛的新型固體形式,而不需破壞或形成共價鍵。此結構特徵可以被視為經由特定的相互作用進行一系列分子辨認的結果。以共晶化合物來量身訂作材料特性,已激發許多研究人員在結晶工程領域的興趣。
儘管有大量關於共晶化合物的文獻,但大部分仍主要集中在活性藥物成分的探討。本論文的目的是採用目前發展在活性藥物成分上的優勢,來創造奇特的超分子結構,並調控一方便的、有系統的、有效率的,及貼近量產條件的方法來篩選,製造和鑑定共晶化合物。胞嘧啶(cytosine)已被選定為這項研究中作為共晶化合物的主成分,和一系列增加脂肪鏈長度的二羧酸(dicarboxylic acids),HOOC(CH2)nCOOH (n= 0 至 2)被選定為共晶化合物的共同組成者。選擇溶劑微量研磨法(solvent-drop grinding)為共晶化合物的篩選方法,而採用溶液結晶法(solution crystallization)製備共晶化合物。我們製造的共晶化合物中胞嘧啶間的分子辨認和超分子異模塊(supramolecular heterosynthons)可能被用於研究胞嘧啶特有的分子印記和DNA蛋白質結合的理論設置。實驗室常見的分析工具,如PXRD,DSC,TGA,IR,OM,EA和SXD被用來了解超分子結構,並確認共晶化合物的品質。結果共產生4:1胞嘧啶-草酸二水合物、2:1胞嘧啶-丙二酸,和2:1胞嘧啶-琥珀酸的共晶化合物。之前,大多數研究共晶化合物的物理和化學性質主要來自製藥業,因此沒有提到共晶化合物關於光學性質的文獻。因此,我們希望製作共晶化合物用於光學元件上,其中具有光電特性的共晶化合物之光致發光強度,可以透過改變各種共晶化合物的共同組成者來調整,如果經由控制與優化,將可廣泛用於有機發光二極管(OLED),甚至生物發光二極管(BioLED)的製程上。
摘要(英) The crystalline materials obtain their fundamental physical properties from the molecular arrangement within the solids, and altering the placement and/or interactions between these molecules can usually have a direct impact on the properties of a particular solid. The crystal form diversity drive unique physicochemical properties. Solid form discovery and design depends on the nature of the molecule of interest and the type of physical property challenges faced in its development.
Crystal engineering has evolved in such a manner that it invokes self-assembly of existing molecules to generate a wide range of new solid forms without the need to break or form covalent bonds. The structural features can be regarded as the result of a series of molecular recognition events via specific interactions. Co-crystals have excited the interest of many researchers in the crystal engineering field as a way to tailor-make material properties.
Despite of a large number of literatures about co-crystals, most paper focused mainly on active pharmaceutical ingredients (APIs). The aim of this thesis is to take the full advantage of those current advancements in APIs to creat exotic supramolecular architectures and to concoct a convenient, systematic, efficient, and close-to-scale-up-conditions method for screening, manufacturing, and characterization of co-crystal. Cytosine has been chosen for this study mainly as a co-crystal component with a series of dicarboxylic acids of increasing aliphatic chain length, HOOC(CH2)nCOOH (n= 0 to 2) were selected as co-crystal co-formers. The solvent-drop grinding method was selected to be the co-crystal screening method and solution crystallization was used for co-crystal manufacturing. The molecular recognition among cytosines and the supramolecular heterosynthons of our fabricated co-crystals might be used for the investigation of theoretical sites of cytosine specific to molecular imprint and DNA-binding proteins. Common laboratory analytical tools such as PXRD, DSC, TGA, FT-IR, OM, EA, and SXD were used to understand the supramolecular architectures and to ensure the quality of co-crystals. 4:1 co-crystal of cytosine-oxalic acid dihydrate, 2:1 co-crystal of cytosine-malonic acid, and 2:1 co-crystal of cytosine-succinic acid were manufactured.
Formerly, most of those who study the physical and chemical properties of the co-crystal compound were from the pharmaceutical industry, and thus there was no literature mentioning the optical properties of co-crystals. Therefore, we hope to fabricate co-crystal compounds for optical devices in which the photoluminescence (PL) intensity of the co-crystal compounds having optoelectronic properties could be tuned by varying the kinds of co-crystal co-formers. It could widely be applied in the manufacturing process of organic light-emitting diodes (OLED), or even biologic light-emitting diodes (BioLED).
關鍵字(中) ★ 胞嘧啶
★ 分子辨認
★ 光致螢光
★ 共晶化合物
關鍵字(英) ★ co-crystal
★ cytosine
★ molecular recognition
★ photoluminescence
論文目次 Table of Contents
摘要.............................................................................................................................................i
Abstract ……………………………………………………………………………………….iii
Acknowledgement v
Table of Contents vii
List of Tables xi
List of Figures xii
Chapter 1 Executive Summary 1
1.1 Introduction 1
1.2 Brief Introduction of Cytosine 5
1.3 Conceptual Framework 7
1.4 References 9
Chapter 2 Analytical Instruments 13
2.1 Introduction 13
2.2 Thermal Analysis 16
2.2.1 Differential Scanning Calorimetry (DSC) 16
2.2.2 Thermal Gravimetric Analysis (TGA) 19
2.3 Crystallography 22
2.3.1 Powder X-ray Diffractometry (PXRD) 22
2.3.2 Single-Crystal X-ray Diffractometry (SXD) 25
2.4 Spectroscopic Instrument 29
2.4.1 Fourier Transform Infrared (FT-IR) Spectroscopy 29
2.4.2 Solid-State Nuclear Magnetic Resonance (SSNMR) 31
2.4.3 Photoluminescence Spectroscopy (PL) 35
2.5 Microscopic Methods 38
2.5.1 Optical Microscopic (OM) 38
2.5.2 Hot Stage & Polarizing Optical Microscopy (HSOM) 40
2.6 Elemental Analysis (EA) 42
2.7 Conclusions 45
2.8 Reference 46
Chapter 3 Solubility, Polymorphism, Crystallinity, and Crystal Habits of Cytosine by Initial Solvent Screening 51
3.1 Introduction 51
3.1.1 Solubility 53
3.1.2 Crystal Habits 54
3.1.3 Polymorphism 55
3.1.4 Crystallinity 58
3.2 Materials 59
3.2.1 Cytosine 59
3.2.2 Solvents 62
3.3 Experimental Methods 66
3.3.1 Initial solvent screening 66
3.3.2 Instrumental Analysis 69
3.4 Results and Discussion 72
3.4.1 Solubility 72
3.4.2 Crystal Habits 76
3.4.3 Polymorphism 79
3.4.4 Crystallinity 85
3.5 Conclusions 87
3.6 References 88
Chapter 4 Screening, Manufacturing and Characterization Techniques of Co-Crystals: Cytosine with Dicarboxylic Acids 94
4.1 Introduction 94
4.1.1 Material candidate and design 95
4.1.2 The aim of co-crystal formation 96
4.1.3 Review of co-crystal screening/manufacturing 97
4.2 Materials 100
4.3 Experimental Section 102
4.3.1 Co-crystal screening procedures 102
4.3.2 Co-crystal formation procedures 103
4.3.3 Analytical Instruments 104
4.3.4 Solubility Study 110
4.4 Results and Discussion 112
4.4.1 Screening Results 112
4.4.2 Characterization 115
4.4.3 Solubility Study 147
4.4.4 Photoluminescence (PL) 151
4.5 Conclusions 153
4.6 References 154
Chapter 5 Conclusions and Future Works 162
5.1 Initial Solvent Screening 162
5.2 The Co-crystals of Cytosine with Dicarboxylic Acids 163

List of Tables
Table 2.1 Summary on the characterization capacities of the analytical apparatuses 15
Table 3.1 23 kinds of solvents in our experiments. 63
Table 3.2 Form space of cytosine, the solvents were arranged by Hildebrand values. 73
Table 3.3 Molar enthalpy and entropy of dissolution of cytosine in different solvents. 75
Table 3.4 Aspect ratios of the cytosine recrystallized by temperature cooling method in different good solvents. 77
Table 3.5 Aspect ratios of cytosine crystals re-crystallized from 4 kinds of anti-solvents. 78
Table 3.6 The enthalpy of melting and crystallinity of cytosine crystals by temperature cooling in 2 kinds of good solvents. 86
Table 3.7 The enthalpy of melting and crystallinity of cytosine monohydrate by an anti-solvent method. 86
Table 4.1 The information of the chemicals. 101
Table 4.2 IR assignments of cytosine, dicarboxylic acids, and co-crystals of cytosine with dicarboxylic acids. 124
Table 4.3 Elemental analysis of co-crystals of cytosine-oxalic acid dihydrate, cytosine-malonic acid, and cytosine-succinic acid. 132
Table 4.4 Crystallographic data of co-crystals and cytosine monohydrate. 138
Table 4.5 Selected bond lengths (Å) of the co-crystals and cytosine monohydrate.a 139
Table 4.6 Selected bond angles (o) of the co-crystals and cytosine monohydrate.a 140
List of Figures
Figure 1.1 Schematic map of the common solid forms and their respected compounds.1 2
Figure 1.2 The chemical structure of cytosine. 6
Figure 2.1 Schematic diagram of a DSC. The triangles are amplifiers that determine the difference in the two input signals. The sample heater power is adjusted to keep the sample and the reference at the same temperature during the DSC scan. 18
Figure 2.2 (a) Heat flux DSC, (b) power-compensated DSC (S = Sample pan; R = Reference pan). 19
Figure 2.3 A Perkin Elmer DSC 7 differential scanning calorimeter. 19
Figure 2.4 A Perkin Elmer TGA 7 thermogravimetric analyzer. 21
Figure 2.5 Diffraction of Bragg’s Law. 23
Figure 2.6 A Bruker Axs D8 Advance PXRD. 25
Figure 2.7 Schematic representation of a four-circle diffractometer. 27
Figure 2.8 The steps involved in a crystal structure determination. 27
Figure 2.9 A Siemens SMART CCD-based X-ray diffractometer equipped with Oxford Cryosystems low temperature device. 28
Figure 2.10 A schematic illustration of FTIR operation system. 30
Figure 2.11 A Perkin Elmer Spectrum One FT-IR spectrometer (Perkin Elmer, New York, USA). 31
Figure 2.12 Schematic representation of the MAS technique. The spinning axis of the sample is at an angle of 54.74o (magic angle) with respect to static magnetic field B0. 32
Figure 2.13 Solid-state NMR experiments were performed on a Varian Infinityplus-500 NMR spectrometer. 35
Figure 2.14 Schematic illustration of luminescence processes. 37
Figure 2.15 Perkin Elmer LS-55 Fluorescence spectrometer.. 37
Figure 2.16 Light paths of the optical microscopy 39
Figure 2.17 Olympus SZII (Tokyo, Japan) optical microscopy. 39
Figure 2.18 Olympus BX-51 optical microscope and Linkam Scientific Instruments Ltd CI94 hot stage. 41
Figure 2.19 Schematic diagram of an automatic C, H, and N analyzer. 43
Figure 2.20 Heraeus vario EL-III-NCSH (Elementar Company, Germany) elemental analyzer. 43
Figure 2.21 The workflow for screening and manufacturing co-crystals which contained of all of the used analytical instruments. 45
Figure 3.1 Typical Solubility curve and a cooling crystallization path from A to D. 54
Figure 3.2 Solubility diagram for enantiotropic polymorphism. Form I was the stable form below the transition temperature, while Form II was the metastable one. Above the transition point (Ttr), Form I became metastable, while Form II became stable. 56
Figure 3.3 Solubility diagram for monotropic polymorphism. Form I was considered the thermodynamically stable polymorph, while Form II was the kinetically stable (metastable) polymorph. 57
Figure 3.4 The molecule structure of anhydrous cytosine. 60
Figure 3.5 The structure (a) cytidine is the nucleoside of cytosine in RNA and (b) deoxycytidylate is the nucleotide of cytosine in DNA. 60
Figure 3.6 (a) The Watson-Crick base pair, cytosine forms three hydrogen bonds with guanine and (b) the Hoogsteen base pair, thymine forms two hydrogen bonds with adenine. 60
Figure 3.7 Cytosine has two tautomeric forms, the amino form and imino form. 61
Figure 3.8 (a) TGA data and (b) DSC thermogram at a heating rate of 10oC/min of the purchased cytosine for use test. 62
Figure 3.9 The recrystallization of cytosine by temperature cooling. 67
Figure 3.10 Solubility curve of cytosine in the good solvents. 74
Figure 3.11 The Van’t Hoff plots of the solubility values of cytosine in 2 different kinds of good solvents. 76
Figure 3.12 OM images of (a) cytosine monohydrate solids grown from water, and (b) cytosine solids grown from DMSO. 77
Figure 3.13 OM images of the cytosine monohydrate crystals recrystallized from 4 kinds of anti-solvents in an aqueous solution. (a) THF at 60oC, (b) 1,4-dioxane at 60oC, (c) acetonitrile at 60oC, and (d) acetone at 50oC. 78
Figure 3.14 (a) TGA data and (b) DSC thermogram at a heating rate of 10oC/min the cytosine monohydrate re-crystallized from water by the cooling method. 80
Figure 3.15 The PXRD pattern of (a) cytosine monohydrate and (b) the purchased cytosine . 80
Figure 3.16 The FT-IR spectra of (a) the cytosine monohydrate and (b) the purchased cytosine . 81
Figure 3.17 (a) TGA scan and (b) DSC thermogram at a heating rate of 10 oC/min of cytosine re-crystallized from DMSO by temperature cooling. 82
Figure 3.18 The PXRD pattern of (a) cytosine re-crystallized from DMSO by temperature cooling and (b) purchased cytosine. 82
Figure 3.19 The FT-IR spectra of (a) cytosine re-crystallized from DMSO by temperature cooling and (b) the purchased cytosine. 83
Figure 3.20 DSC thermograms of cytosine monohydrate recrystallized for three different anti-solvents of (a) 1,4-dioxane at 60oC, (b) acetonitrile at 60oC, and (c) acetone at 50oC, which compared with (d) the purchased anhydrous cytosine. 84
Figure 3.21 The TGA thermograms of cytosine monohydrate recrystallized for three different anti-solvents of (a) 1,4-dioxane at 60oC ((100-13.56)g/ 111.1 g/mol : 13.56g/ 18g/mol = 0.778: 0.753 = 1:1), (b) acetonitrile at 60oC ((100-13.24)g/ 111.1 g/mol : 13.24g/ 18g/mol = 0.781: 0.736 = 1:1), and (c) acetone at 50oC ((100-13.66)g/ 111.1 g/mol : 13.66g/ 18g/mol = 0.777: 0.753 = 1:1). 84
Figure 3.22 The PXRD pattern of cytosine monohydrate recrystallized for the three different anti-solvents of (a) 1,4-dioxane at 60oC, (b) acetonitrile at 60oC, and (c) acetone at 50oC, which compared with (d) the purchased anhydrous cytosine, and (e) cytosine monohydrate. (where * represented the anhydrous cytosine peak.) 85
Figure 4.1 Molecular Structures of (a) cytosine, (b) oxalic acid, (c) malonic acid, and (d) succinic aicd. 100
Figure 4.2 DSC heating curves of (a), (b) and (c) are physical mixtures of cytosine and malonic acid at 1:1, 1:2, 2:1 molar ratios respectively. The purchased compounds of (d) cytosine, and (e) malonic acid. 112
Figure 4.3 PXRD data for the complex prepared by the solvent-drop grinding method of (a) cytosine-oxalic acid dihydrate (2:1), and the purchased compounds of (b) oxalic acid dihydrate, (c) cytosine. (* represented the new peak relative to the starting materials.) 114
Figure 4.4 PXRD data for the complex prepared by the solvent-drop grinding method of (a) cytosine-malonic acid (2:1), and the purchased compounds of (b) malonic acid, (c) cytosine. (* represented the new peak relative to the starting materials.) 114
Figure 4.5 PXRD data for the complex prepared by the solvent-drop grinding method of (a) cytosine-succinic acid (2:1), and the purchased compounds of (b) succinic acid, (c) cytosine. (* represented the new peak relative to the starting materials.) 115
Figure 4.6 The optical micrographs of (a) cytosine monohydrate, the co-crystals of (b) CmOAn, (c) CmMAn, and (d) CmSAn. 116
Figure 4.7 PXRD patterns of (a) solution crystallized co-crystal of CmOAn, (b) water-drop ground mixture of cytosine and oxalic acid dihydrate , (c) oxalic acid dehydrate, and (d) cytosine (* indicated the new appearing diffraction peak). 117
Figure 4.8 PXRD patterns of (a) solution crystallized co-crystal of CmMAn, (b) water-drop ground mixture of cytosine and malonic acid, (c) malonic acid, and (d) cytosine (* indicated the new appearing diffraction peak). 117
Figure 4.9 PXRD patterns of (a) solution crystallized co-crystal of CmSAn, (b) water-drop ground mixture of cytosine and succinic acid, (c) succinic acid, and (d) cytosine (* indicated the new appearing diffraction peak). 118
Figure 4.10 (a) TGA data and (b) DSC thermogram at a heating rate of 10oC/min for the co-crystal of CmOAn•xH2O prepared by the cooling method. 119
Figure 4.11 (a) TGA data and (b) DSC thermogram at a heating rate of 10oC/min for the co-crystal of CmMAn prepared by the cooling method. 119
Figure 4.12 (a) TGA data and (b) DSC thermogram at a heating rate of 10oC/min for the co-crystal of CmSAn prepared by the cooling method. 120
Figure 4.13 FTIR spectra of (a) cytosine, (b) oxalic acid dihydrate, and (c) the cocrystal of CmOAn•xH2O. 122
Figure 4.14 FTIR spectra of (a) cytosine, (b) malonic acid, and (c) the cocrystal of CmMAn. 122
Figure 4.15 FTIR spectra of (a) cytosine, (b) succinic acid, and (c) the cocrystal of CmSAn. 123
Figure 4.16 1H MAS NMR spectra of (a) cytosine, (b) oxalic acid dihydrate, (c) the cocrystal of CmOAn•xH2O. 127
Figure 4.17 1H MAS NMR spectra of (a) cytosine, (b) malonic acid, (c) the cocrystal of CmMAn. 127
Figure 4.18 1H MAS NMR spectra of (a) cytosine, (b) succinic acid, (c) the cocrystal of CmSAn. (* indicated the –COOH peak). 128
Figure 4.19 13C CP MAS NMR spectra of (a) cytosine, (b) oxalic acid dihydrate, (c) the cocrystal of CmOAn•xH2O. 128
Figure 4.20 13C CP MAS NMR spectra of (a) cytosine, (b) malonic acid, (c) the cocrystal of CmMAn. 129
Figure 4.21 13C CP MAS NMR spectra of (a) cytosine, (b) succinic acid, (c) the cocrystal of CmSAn. (* indicated the –COOH peak). 129
Figure 4.22 (a) PXRD pattern from solution crystallization by cooling, and (b) theoretical PXRD pattern from SXD of the co-crystal of C4OA1•2H2O. 136
Figure 4.23 (a) PXRD pattern from solution crystallization by cooling, and (b) theoretical PXRD pattern from SXD of the co-crystal of C2MA1. 136
Figure 4.24 (a) PXRD pattern from solution crystallization by cooling, and (b) theoretical PXRD pattern from SXD of the co-crystal of C2SA1. 137
Figure 4.25 Visualization of the (a) ORTEP plot of the molecular entities in the asymmetric unit of cytosine monohydrate, (b) hydrogen bonded layer formed by cytosine monohydrate, and (c) the packing diagram of the hydrogen-bonded layers of cytosine monohydrate as depicted by a computer software (Diamond 3.1, Crystal Impact Gbr, Brandenberg, Germany). A dimeric unit of cytosine was labeled in a green dashed box. 142
Figure 4.26 Visualization of the (a) ORTEP plot of the molecular entities in the asymmetric unit of the cocrystal C4OA1•2H2O, (b) hydrogen bonded layer formed by cytosine and water molecules in the cocrystal C4OA1•2H2O, and (c) hydrogen-bonded layer formed by cytosine and oxalic molecules in the cocrystal C4OA1•2H2O (d) the packing diagram of the hydrogen-bonded layers of the cocrystal C4OA1•2H2O as depicted by a computer software (Diamond 3.1, Crystal Impact Gbr, Brandenberg, Germany). A dimeric unit of cytosine was labeled in a green dashed box. 144
Figure 4.27 Visualization of the (a) ORTEP plot of the molecular entities in the asymmetric unit of the cocrystal C2MA1, (b) hydrogen-bonded layer formed by cytosine and malonic molecules in the cocrystal C2MA1, and (c) the packing diagram of the hydrogen-bonded layers of the cocrystal C2MA1 as depicted by a computer software (Diamond 3.1, Crystal Impact Gbr, Brandenberg, Germany). A dimeric unit of cytosine was labeled in a blue dashed box. 145
Figure 4.28 Visualization of the (a) ORTEP plot of the molecular entities in the asymmetric unit of the cocrystal C2SA1, (b) hydrogen-bonded layer formed by cytosine and succinic molecules in the cocrystal C2SA1, and (c) the packing diagram of the hydrogen-bonded layers of the cocrystal C2SA1 as depicted by a computer software (Diamond 3.1, Crystal Impact Gbr, Brandenberg, Germany). A dimeric unit of cytosine was labeled in a blue dashed box. 146
Figure 4.29 The solubility curves of the cytosine (■), cytosine monohydrate (●), co-crystal C4OA1•2H2O (▲), co-crystal of C2MA1 (2:1) cocrystal (▼), and co-crystal of C2SA1 (◆). 147
Figure 4.30 PSD for cytosine-oxalic acid-water system at 25oC showing reactant solution concentrations ([cyt]T and [oxa]T) of the cocrystal (■) . Symbols indicated experimental data. Solid line represented the predicted dependence according to [cyt]T = ( Ksp / [oxa]T )0.25 with Ksp = 8.21×10-12 m5. Measured solubility of cytosine and the cocrystal in pure RO water were indicated by ▲ and ●, respectively. The dashed line represented reactant stoichiometry in solution corresponding to that of co-crystals. 150
Figure 4.31 PSD for cytosine-malonic acid-water system at 25oC showing reactant solution concentrations ([cyt]T and [mal]T) of the cocrystal (■). Symbols indicated experimental data. Solid line represented the predicted dependence according to [cyt]T = ( Ksp / [mal]T )0.5 with Ksp = 4.90×10-5 m3. Measured solubility of cytosine and the cocrystal in pure RO water were indicated by▲ and ●, respectively. The dashed line represented reactant stoichiometry in solution corresponding to that of cocrystals. 151
Figure 4.32 PSD for cytosine-succinic acid-water system at 25oC showing reactant solution concentrations ([cyt]T and [suc]T) of the cocrystal (■). Symbols indicated experimental data. Solid line represented the predicted dependence according to [cyt]T = ( Ksp / [suc]T )0.5 with Ksp = 3.11×10-6 m3. Measured solubility of cytosine and the cocrystal in pure RO water were indicated by ▲ and ●, respectively. The dashed line represented reactant stoichiometry in solution corresponding to that of cocrystals. 152
Figure 4.33 The PL emission spectra of commercially purchased (a) cytosine, (b)oxalic acid d1hydrate, (c) malonic acid, and (d) succinic acid. 153
Figure 4.34 The PL emission spectra of (a) the co-crystal C2MA1, (b) cytosine, (c) cytosine monohydrate, (d) the co-crystal C2SA1, and (e) the co-crystal C4OA1•2H2O. 153
參考文獻 N. Schultheiss and A. Newman, “Pharmaceutical Cocrystals and Their Physicochemical Properties,” Cryst. Growth Des., 9(6), 2950-2967 (2009).
P. Vishweshwar, J. A. McMahon, J. A. Bis, and M. J. Zaworotko, “Pharmaceutical Co-Crystals,” J. Pharm. Sci., 95(3), 499-516 (2006).
J. M. Lehn, “Supramolecular Chemistry: from Molecular Information Towards Self-organization and Complex Matter,” Rep. Prog. Phys., 67(3), 249-265 (2004).
O. Almarsson and M. J. Zaworotko, “Crystal Engineering of the Composition of Pharmaceutical phases. Do Pharmaceutical Co-crystals represent a New Path to Improved Medicines?” Chem. Commun., (17), 1889-1896 (2004).
A. M. Thayer, “The Choice of Pharmaceutical Crystalline Form Can be Used to Optimize Drug Properties, and Cocrystals are Emerging as New Alternatives,” Chem. Eng. News, 85(25), 17-30 (2007).
M. C. Etter, “Hydrogen Bonds as Design Elements in Organic Chemistry,” J. Phys. Chem., 95(12), 4601-4610 (1991).
M. C. Etter, “Encoding and Decoding Hydrogen-Bond Patterns of Organic Compounds,” Acc. Chem. Res., 23(4), 120-126 (1990).
N. Blagden, D. J. Berry, A. Parkin, H. Javed, A. Ibrahim, P. T. Gavan, L. L. De Matos, and C. C. Seaton, “Current Directions in Co-crystal Growth,” New J. Chem., 32(10), 1659-1672 (2008).
M. B. Hickey, M. L. Peterson, L. A. Scoppettuolo, S. L. Morrisette, A. Vetter, Guzman, J. F. Remenar, Z. Zhang, M. D. Tawa, S. Haley, M. J. Zaworotko, and Ö. Almarsson, “Performance Comparison of a Co-crystal of Carbamazepine with Marketed Product,” Eur. J. Pharm. Biopharm., 67(1), 112–119 (2007).
A. N. Sokolov, T. Friscic, and L. R. MacGillivray, “Enforced Face-to-Face Stacking of Organic Semiconductor Building Blocks within Hydrogen-Bonded Molecular Cocrystals,” J. Am. Chem. Soc., 128(9), 2806–2807 (2006).
H. Koshima, and M. Miyauchi, “Polymorphs of a Cocrystal with Achiral and Chiral Structures Prepared by Pseudoseeding: Tryptamine/ Hydrocinnamic Acid,” Cryst. Growth Des., 1(5), 355–357(2001).
W. Cho, H. J Lee, and M. Oh, “Growth-Controlled Formation of Porous Coordination Polymer Particles,” J. Am. Chem. Soc., 130(50), 16943–16946( 2008).
A. V. Trask, and W. Jones, “Crystal Engineering of Organic Cocrystals by the Solid-State Grinding Approach,” Top Curr. Chem., 254, 41-70 (2005).
H. G. Brittain, “Photoluminescence of Pharmaceutical Materials in Solid State. 4. Fluorescence Studies of Various Solvated and Desolvated Solvatomorphs of Erythromycin A,” Volume 2007 of “Reviews in Fluorescence,” 1st Ed., (Springer, New York, USA, 2009), pp. 379-392.
Y. Kawabe, L. Wang, S. Horinouchi, and N. Ogata, “Amplified Spontaneous Emission from Fluorescent-Dye-Doped DNA-Surfactant Complex Films,” Adv. Mater., 12(17), 1281-1283 (2000).
G. Portalone, and M. Colapietro, “Solid-Phase Molecular Recognition of Cytosine Based on Proton-Transfer Reation,” J. Chem. Crystallogr., 39(3), 193-200 (2009).
T. Balasubramanian, P. T. Muthiah, and W. T. Robinson, “Cytosine-Carboxylate Interactions: Crystal Structure of Cytosinium Hydrogen Maleate,” Bull. Chem. Soc. Jpn., 69(10), 2919-2922 (1996).
B. Sellergren, “Imprinted Polymers with Memory for Small Molecules, Proteins, or Crystals,” Angew. Chem. Int. Ed., 39(6), 1031-1037 (2000).
C. O. Pabo, “Protein-DNA Recognition,” Annu. Rev. Biochem., 53, 293-321 (1984).
A. Sarai, and H. Kono, “Protein-DNA Recognition Patterns and Predictions,” Annu. Rev. Biophys. Biomol. Struct., 34, 379-398 (2005).
D. L. Barker, and R. E. Marsh, “The Crystal Structure of Cytosine,” Acta. Cryst., 17(12), 1581-1587 (1964).
G. A. Jeffrey, and Y. Kinoshita, “The Crystal Structure of Cytosine Monohydrate,” Acta. Cryst., 16(1), 20-28 (1963).
S. Basavoju, D. Bostrom, and S. P. Velaga, “Indomethacin-Saccharin Cocrystal: Design, Synthesis and Preliminary Pharmaceutical Characterization,” Pharm. Res., 25(3), 530-541 (2008).
A. W. Newman and S. R. Byrn, “Solid-state analysis of the active pharmaceutical ingredient in drug products,” Drug Discovery Today, 8(19), 898-904(2003).
P. J. Haines and F. W. Wilburn, “Differential thermal analysis and differential scanning calorimetry,” Chapter 3 of “Thermal Methods of Analysis,” 1st Ed., (Blackie Academic and Professional, Scotland, England, 1995), pp. 69-114.
A. K. Tiwary, “Modification of Crystal Habit and Its Role in Dosage Form Performance,” Drug Dev. Ind. Pharm., 27(7) 699-709 (2001).
. D. L. Pavia, G. M. Lampman and G. S. Kriz, “Infrared Spectroscopy,” Chapter 2 of “Introduction to Spectroscopy,” 3rd Ed., (Brooks/COLE Thomson Learning, Mississippi, USA, 2001), pp. 13-24.
K. Gotoh, H. Masuda, and K. Higashitani, “Powder-Handling Operation,” Chapter 5 of “Powder Technology Handbook,” 2nd Ed., (Marcel Dekker, New York, USA, 1997), pp. 720-730.
K. Gotoh, H. Masuda, and K. Higashitani, “Fundamental Properties of Powder Beds,” Chapter 3 of “Powder Technology Handbook,” 2nd Ed., (Marcel Dekker, New York, USA, 1997), pp. 413-423.
K. Gotoh, H. Masuda, and K. Higashitani, “Powder-Handling Operation,” Chapter 5 of “Powder Technology Handbook,” 2nd Ed., (Marcel Dekker, New York, USA, 1997), pp. 659-661.
H. G. Brittain, “Methods for the Characterization of Ploymorphs and Solvates,”Chapter 6 of “Polymorphism in Pharmaceutical Solids,” (Marcel Dekker, New York, USA, 1999), pp. 227-271.
D. Giron, “Thermal Analysis, and Calorimetric Methods in the Characterisation of Polymorphs and Solvates,” Thermochim. Acta, 245(2), 1-59 (1995).
S. D. Clas, C. R. Dalton, and B. C. Hancock, “Differential Scanning Calorimetry: Applications in Drug Development,” Pharm. Sci. Technol. Today, 2(8), 311-320 (1999).
E. Lu, N. Rodríguez-Hornedo and R. Suryanarayanan,“A rapid thermal method for cocrystal screening,” CrystEngComm, 10(6), 665 – 668(2008).
D. A. Skoog, F. J. Holler, and T. A. Nieman, “Thermal Methods,” Chapter 31 of “Principles of Instrumental Analysis,” 5th Ed., (Thomson Learning, Mississippi, USA, 2001), pp. 798-801.
N. S. Murthy and F. Reidinger, “X-ray Analysis,” Chapter 7 of “Matericals Characterization and Chemical Analysis,” (J. P. Sibilia, Wiley-Vch, New York, USA, 1996) pp. 143-149.
T. C. Huang, “Automatic X-ray Single Crystal Structure Analysis System for Small Molecule,” The Rigaku J., 21(2), 43-46 (2004).
Y. Zhang and D. J. W. Grant, “Similarity in Structures of Racemic and Enantiomeric Ibuprofen Sodium Dehydrates,” Acta Crystallogr. C, 61(9), m435-m438 (2005).
L. Kr. Hansen, G. L. Perlovich, and A. Bauer-Brandl, “Redetermination and H-atom Refinement of (S)-(+)-Ibuprofen,” Acta Crystallogr. E: Struct. Rep. Online, 59(9), 1357-1358 (2003).
L. Kr. Hansen, G. L. Perlovich, and A. Bauer-Brandl, “Redetermination and H-atom Refinement of (S)-(+)-Ibuprofen. corrigendum,” Acta Crystallogr. E, 62(7), e17-e18 (2006).
C. Ciacovazzo, H. L. Monaco, G. Artioli, D. viterbo, G. Ferraris, G. Gilli, G. Zanotti, and M. Catti, “Experimental Method in X-ray Andneutron Crystallography,” Chapter 5 of “Fundamentals of Crystallography,” 2nd Ed., (Oxford university press, New York, USA, 2002) p. 336 .
J. P. Glusker, and K. N. Trueblood, “Experimental Measurement,” Chapter 4 of “Crystal Structure Analysis A Primer,” 2nd Ed., (Oxford university press, New York, USA, 1985), pp. 42-47.
. D. A. Skoog, F. J. Holler, and T. A. Nieman, “Components of Optical Instrument,” Chapter 7 of “Principles of Instrumental Analysis,” 5th Ed., (Thomson Learning, Mississippi, USA, 2001), pp. 182-183.
. A. Bauer-Brandl, “Polymorphic Transitions of Cimetidine During Manufacture of Solid Dosage Forms,” Int. J. Pharm., 140(2), 195-206 (1996).
D. A. Skoog, F. J. Holler, and T. A. Nieman, “Nuclear Magnetic Resonance Spectroscopy,” Chapter 19 of “Principles of Instrumental Analysis,” 5th Ed., (Thomson Learning, Mississippi, USA, 2001), pp. 445-464.
P. A. Tishmack, D. E. Bugay, and S. R. Byrn, “Solid-State Nuclear Magnetic Resonance Spectroscopy-Pharmaceutical Applications,” J. Pharm. Sci., 92(3), 441-474 (2003).
E. R. Andrew, “Magic Angle Spinning in Solid State N.M.R. Spectroscopy,” Phil. Trans. R. Soc. Lond. A, 299(1452), 505-520 (1981).
A. Alia, S. Ganapathy, and Huub J. M. de Groot, “Magic angle spinning (MAS) NMR: a new tool to study the spatial and electronic structure of photosynthetic complexes,” Photosynth. Res., 102(2-3), 415-425 (2009).
F. G. Vogt, J. S. Clawson, M. Strochmeir, A. J. Edwards, T. N. Pham, and S. A. Watson, “Solid-State NMR Analysis of Organic Cocrystals and Complexes,” Cryst. Growth Des., 9(2), 921-937 (2009).
D. Braga, L. Maini, G. de Sanctis, K. Rubini, F. Grepioni, M. R. Chierotti, and R. Gobetto, “Mechanochemical Preparation of Hydrogen-Bonded Adducts Between the Diamine 1,4-Diazabicyclo[2.2.2]octane and Dicarboxylic Acids of Variable Chain Length: An X-ray Diffraction and Solid-State NMR Study,” Chem. Eur. J., 9(22), 5538-5548 (2003).
H. G. Brittain, B. J. Elder, P. K. Isbester, and A. H. Salerno, “Solid-State Fluorescence Studies of Some Polymorphs of Diflunisal,” Pharm. Res., 22(6), 999-1006 (2005).
http://biosurface.memphis.edu/images/ConfigCoordDiag2.png, “Luminescence.”
T. C. Kriss, V. M. Kriss, and M.Vesna, “History of the Operating Microscope: From Magnifying Glass to Microneurosurgery,” Neurosurgery, 42(4), 899-907 (1998).
http://www.cella.cn/jxck/02.ppt, “Methods and Techniques for Cell Biology”
R. E. Davis, K. A. Lorimer, M. A. Wilkowaki, and J. H. Rivers, “Studies of Phase Relationships in Cocrystal System,” ACA Transactions, 39, 41-61(2004).
D. J. Berry, C. C. Seaton, W. Clegg, R. W. Harrington, S. J. Coles, P. N. Horton, M. B. Hursthouse, R. Storey, W. Jones, T. Fris ̌c ̌ic ́, and N. Blagden, “Applying Hot-Stage Microscopy to Co-Crystal Screening: A Study of Nicotinamide with Seven Active Pharmaceutical Ingredients,” Cryst. Growth Des., 8(5), 1697-1712 (2008).
http://www.laboratoryequipment.com, “Factors Affecting C, H, N Micro-Analytical”
D. A. Skoog, F. J. Holler, and T. A. Nieman, “Automated Methods of Analysis,” Chapter 33 of “Principles of Instrumental Analysis,” 5th Ed., (Thomson Learning, Mississippi, USA, 2001), pp. 844-849.
J. Grant, “Quantitative Organic Microanalysis Based on the Methods of Fritz Pregl,” J. Am. Med. Assoc., 132(1), 52(1946).
O. P. Filho, G. P. LaTorre, and L. L. Hench, “Effect of Crystallization on Apatite-layer Formation of Bioactive Glass 45S5,” J. Biomed. Mater. Res., 30(4), 509-514 (1996).
A. Pan, X. Lin, R. Liu, C. Li, X. He, H. Gao, and B. Zou, “Surface Crystallization Effects on The Optical and Electric Properties of CdS Nanorods,” Nanotechnology, 16(10),2402–2406 (2005).
Y. Akpalu, L. Kielhorn, B. S. Hsiao, R. S. Stein, T. P. Russell, J. V. Egmond, and M. Muthukumar, “Structure Development during Crystallization of Homogeneous Copolymers of Ethene and 1-Octene: Time-Resolved Synchrotron X-ray and SALS Measurements,” Macromol., 32(3), 765-770 (1999).
H. Ahari, R. L. Bedard, C. L. Bowes, N. Coombs, O. M. Dag, T. Jiang, G. A. Ozin, S. Petrov , I. Sokolov, A. Verma, G. Vovk, and D. Young, “Effect of Microgravity on The Crystallization of a Self-assembling Layered Material,” Nature, 388(6645), 857 - 860 (1997 ).
A. J. Wright, S. E. McGauley, S. S. Narine, W. M. Willis, R. W. Lencki, and A. G. Marangoni, “Solvent Effects on the Crystallization Behavior of Milk Fat Fractions,” J. Agric. Food Chem., 48(4), 1033-1040 (2000).
S. L. Morissette, O. Almarsson, M. L. Peterson, J. F. Remenar, M. J. Read, A. V. Lemmo, S. Ellis, M. J. Cima, and C. R. Gardner, “High-Throughput Crystallization: Polymorphs, Salts Co-crystals and Solvates of Pharmaceutical Solids,” Adv. Drug Del. Rev., 56(3), 275-300 (2004).
D. Braga, and F. Grepioni, “Making Crystals from Crystals: a Green Route to Crystal Engineering and Polymorphism,” Chem. Commun., 7(29), 3635-3645(2005).
R. Hilfiker, J. Berghausen, F. Blatter, A. Burkhard, S. M. D. Paul, B. Freiermuth, A. Geoffroy, U. Hofmeier, C. Marcolli, B. Siebenhaar, M. Szelagiewicz, A. Vit, and M. V. Raumer, “Polymorphism-Integrated Approach from High-throughput Screening to Crystallization Optimization,” J. Therm. Anal. Calorim., 73(2), 429-440(2003).
D. J. W. Grant, “Theory and Origin of Polymorphism,” Chapter 1 of “Polymorphism in pharmaceutical solids,” (Marcel Dekker, New York, USA, 1999), pp.1-21.
C. U. Yurteri, M. K. Mazumder, N. Grable, G. Ahuja, S. Trigwell, A. S. Biris, R. Sharma, and R. A. Sims, “Electrostatic Effects on Dispersion, Transport, and Deposition of Fine Pharmaceutical Powders: Development of an Experiment Method for Quantitative Analysis,” Pharticulate Sci. Tech., 20(1), 59-79(2002).
P. York, “Solid-State Properties of Powders in the Formulation and Processing of Solid Dosage Forms,” Int. J. Pharm., 14(1), 1-28(1983).
G. Portalone, and M. Colapietro, “Solid-Phase Molecular Recognition of Cytosine Based on Proton-Transfer Reaction,” J. Chem. Crystallogr., 39(3), 193-200 (2009).
T. Balasubramanian, P. T. Muthiah, and W. T. Robinson, “Cytosine-Carboxylate Interactions: Crystal Structure of Cytosinium Hydrogen Maleate,” Bull. Chem. Soc. Jpn., 69(10), 2919-2922 (1996).
S. R. Perumalla, E. Suresh, and V. R. Pedireddi, “Nucleobases in Molecular Recognition: Molecular Adducts of Adenine and Cytosine with COOH Functional Groups,” Angew. Chem. Int. Ed., 44(47), 7752-7757 (2005).
Z. Yu, W. Li, J. A. Hagen, Y. Zhou, D. Klotzkin, J. G. Grote, and A. J. Steckl, “Photoluminescence and Lasing form Deoxyribonucleic Acid (DNA) Thin Doped with Sulforhodamine,” Applied Optics, 46(9), 1507-1513 (2007).
J. A. Hagen, W. Li, and A. J. Steckl, “Enhanced Emission Efficiency in Organic Light-Emitting Diodes Using Deoxyribonucleic Acid Complex as an Electron Blocking Layer,” Appl. Phys. Lett., 88(17), 1-3 (2006).
H. G. Brittain, and D. J. W. Grant, “Effect of Polymorphism and Solid-State Solvation on Solubility and Dissolution Rate,” Chapter 7 of “Polymorphism in pharmaceutical solids,” (Marcel Dekker, New York, USA, 1999), pp. 279-330.
S. N. Bhattachar, L. A. Deschenesa, and J. A. Wesleya, “Solubility: It Is Not Just for Physical Chemists,” Drug Discov. Today, 11(21-22), 1012-1018 (2006).
C. J. Price, “Take Some Solid Steps to Improve Crystallization,” Chem. Eng. Prog., 93(9), 34-43 (1997).
D. Winn, and M. F. Doherty, “A New Technique for Predicting the Shape of Solution-Grown Organic Crystals,” AlChE J., 44(11), 2501-2514 (1998).
J. W. Mullin, “Crystal Habit Modification,” Chapter 6.4 of “Crystallization,” 3rd Ed., (Butterworth-Heinemann, London, England, 1997) pp248-250.
A. K. Tiwary, “Modification of Crystal Habit and Its Role in Dosage from Performance,” Drug Dev. Ind. Pharm., 27(7), 699-709 (2001).
N. Rasenack, and B. W. Müller, “Crystal Habit and Tabletting Behavior,” Int. J. Pharm., 244(1-2), 45-57 (2002).
M. Lahav, and L. Leiserowitz, “The Effect of Solvent on Crystal Growth and Crystal Habit,” Chem. Eng. Sci., 56(7), 2245-2253 (2001).
J. Bernstein, R. J. Davey, and J. Henck, “Concomitant Polymorphs,” Angew. Chem. Int. Ed., 38(23), 3440-3461 (1999).
P. T. Cardew, and R. J. Davey, “The Kinetics of Solvent-Mediated Phase Transformation,” Math. Phys. Sci., 398(1815), 415-428 (1985).
K. Pack, J. M. B. Evans, and A. S. Myerson, “Determination of Solubility of Polymorphs Using Differential Scanning Calorimetry,” Cryst. Growth. Des., 3(6), 991-995 (2003).
T. Threfall, “Crystallization of Polymorphs: Thermodynamic Insight into the Role of Solvent,” Org. Process Res. Dev., 4(5), 384-390 (2000).
L. X. Yu, M. S. Furness, A. Raw, K. P. Woodland Outlaw, N. E. Nashed, E. Ramos, S. P. F. Miller, R. C. Adams, F. Fang, R. M. Patel, F. O. Holcombe Jr., Y. Chiu and A. S. Hussain, “Scientific Considerations of Pharmaceutical Solid Polymorphism in Abbreviated New Drug Applications,” Pharm. Res., 20(4), 531-536 (2004).
T. Lee, C. S. Kuo, and Y. H. Chen, “Solubility, Polymorphism, Crystallinity, and Crystal Habit of Acetaminophen and Ibuprofen by Initial Solvent Screening,” Pharm. Tech., 30(10), 72-92 (2006).
D. Gao, and J. H. Raytting, “Use of Solution Calorimetry to Determine the Extent of Crystallinity of Drugs and Excipients,” Int. J. Pharm., 151(2), 183-192 (1997).
J. Schiedt, R. Weinkauf, D. M. Neumark, and E. W. Schlag, “Anion Spectroscopy of Uracil, Thymine and the Amino-Oxo and Amino-Hydroxy Tautomers of Cytosine and Their Water Clusters,” Chem. Phys., 239(1-3), 511-524 (1998).
D. L. Barker, and R. E. Marsh, “The Crystal Structure of Cytosine,” Acta. Cryst. 17(12), 1581-1587 (1964).
G. A. Jeffrey, and Y. Kinoshita, “The Crystal Structure of Cytosine Monohydrate,” Acta. Cryst. 16(1), 20-28 (1963).
P. Barrett, B. Smith, J. Worlitschek, V. Bracken, B. O’ Sullivan, and D. O’ Grady, “A Review of the Use of Process Analytical Technology for the Understanding and Optimization of Production Batch Crystallization Processes,” Org. Process Res. Dev., 9(3), 348-355 (2005).
C. P. Mark Roelands, S. Jiang, M. Kitamura, J. H. ter Horst, H. J. M. Kramer, and P. J. Jansens, “Antisolvent Crystallization of the Polymorphs of L-Histidine as a Function of Supersaturation Ratio and of Solvent Composition,” Cryst. Growth Des., 6(4), 955-963 (2006).
N. Nonoyama, K. Hanaki, and Y Yabuki, “Constant Supersaturation Control of Antisolvent-Addition Batch Crystallization,” Org. Process Res. Dev., 10 (4), 727–732 (2006).
Z. Berkovitch-Yellin, J. Van Mil, L. Addadi, M. Idelson, M. Lahav, and L. Leiserowitz, “Crystal Morphology Engineering by"Tailor-Made" Inhibitors; a New Probe to Fine Intermolecular Interactions,” J. Am. Chem. Soc., 107(11), 3111-3122 (1985).
T. Togkalidou, R. D. Braatz, B. K. Johnson, O. Davidson, and A. Andrews, “Experimental Design and Inferential Modeling in Pharmaceutical Crystallization,” AIChE Journal, 47(1), 160-168 (2001).
H. G. Ibahim, F. Pisano, and A. Bruno, “Polymorphism of Phenylbutazone: Properties and Compressional Behavior of Crystals,” J. Pharm. Sci., 66(5), 669-673 (1977).
N. B. Colthup, L. H. Daly, and S. E. Wiberley, “Major Spectra-Structure Correlations by Spectral Regions,” Chapter 13 of “Introduction to Infrared and Raman Spectroscopy,” 3rd Ed., (Academic press Inc, New York, USA, 1991), p. 394.
M. Klussmann, T. Izumi, P. J. A. White, A. Armstrong, G. D. Blackmond, “Emergence of Solution-Phase Homochirality via Crystal Engineering of Amino Acids,” J. Am. Chem. Soc., 129(24), 7657-7660 (2007).
P. Vishweshwar, J. A. McMahon, J. A. Bis, and M. J. Zaworotko, “Pharmaceutical Co-Crystals,” J. Pharm. Sci., 95(3), 499-516 (2006).
G. P. Stahly, “A Survey of Cocrystals Reported Prior to 2000,” Cryst. Growth Des., 9(10), 4212-4229 (2009).
C. L. Cooke, and R. J. Davey, “On the Solubility of Saccharinate Salts and Cocrystals,” Cryst. Growth Des., 8(10), 3483-3485 (2008).
M. Viertelhaus, R. Hilfiker, F. Blatter, and M. Neuburger, “Piracetam Co-Crystals with OH-Group Functionalized Carboxylic Acids,” Cryst. Growth Des., 9(5), 2220-2228 (2009).
D. J. Good, and N. Rodríguez-Hornedo, “Solubility Advantage of Pharmaceutical Cocrystals,” Cryst. Growth Des., 9(5), 2252-2264 (2009).
C. O. Pabo, “Protein-DNA Recognition,” Annu. Rev. Biochem., 53, 293–321(1984).
A. Fayasankar, A. Somwangthanaroj, Z. J. Shao, and N. Rodríguez-Hornedo, “Cocrystal Formation during Cogrinding and Storage is Mediated by Amorphous Phase,” Pharm. Res., 23(10), 2381-2392 (2006).
M. C. Etter, “Hydrogen Bonds as Design Elements in Organic Chemistry,” J. Phys. Chem., 95(12), 4601-4610 (1991).
S. Basavoju, D. Bostrom, and S. P. Velaga, “Indomethacin-Saccharin Cocrystal: Design, Synthesis and Preliminary Pharmaceutical Characterization,” Pharm. Res., 25(3), 530-541 (2008).
D. P. McNamara, S. L. Childs, J. Giordano, A. Iarriccio, J. Cassidy, M. S. Shet, R. Mannion, E. O’Donnell, and A. Park., “Use of A Glutaric Acid Cocrystal to Improve Oral Bioavailability of A Low Solubility API,” Pharm. Res., 23(8), 1888-1897 (2006).
J. H. ter Horst, M. A. Deij, and P. W. Cains, “Discovering New Co-Crystals,” Cryst. Growth Des., 9(3), 1531–1537(2009).
G. G. Z. Zhang, R. F. Henry, T. B. Borchardt, and X. Lou, “Efficient Co-crystal Screening Using Solution-Mediated Phase Transformation,” J. Pharm. Sci., 96(5), 990–995 (2007).
A. V. Trask, W. D. Samuel Motherwell, and W. Jones, “Solvent-Drop Grinding: Green Polymorph Control of Co-crystallization,” Chem. Commun., (7), 890–891 (2004).
D. R. Weyna, T. Shattock, P. Vishweshwar, and M. J. Zaworotko, “Synthesis and Structural Characterization of Cocrystals and Pharmaceutical Cocrystals: Mechanochemistry vs. Slow Evaporation,” Crys. Growth Des., 9(2), 1106–1123 (2009).
E. Gagniere, D. Mangin, F. Puel, C. Bebon, J. P. Klein, O. Monnier, and E. Garcia, “Cocrystal Formation in Solution: In Situ Solute Concentration Monitoring of the Two Components and Kinetic Pathways,” Cryst. Growth Des., 9(8), 3376–3383 (2009).
T. Fris ̌c ̌ic ́, S. L. Childs, S. A. A. Rizvi, and W. Jones, “The Role of Solvent in Mechanochemical and Sonochemical Cocrystal Formation: A Solubility-Based Approach for Predicting Cocrystallization Outcome,” CrystEngComm, 11(3), 418–426 (2009).
D. J. Berry, C. C. Seaton, W. Clegg, R. W. Harrington, S. J. Coles, P. N. Horton, M. B. Hursthouse, R. Storey, W. Jones, T. Fris ̌c ̌ic ́, and N. Blagden, “Applying Hot-Stage Microscopy to Co-crystal Screening: A Study of Nicotinamide with Seven Active
Pharmaceutical Ingredients,” Cryst. Growth Des. 8(5), 1697– 1712 (2008).
E. Lu, N. Rodríguez-Hornedo, and R. Suryanarayanan, “A Rapid Thermal Method for Cocrystal Screening,” CrystEngComm, 10(6), 665–668 (2008).
A. R. Ling and J. L. Baker, “Halogen derivatives of quinine. Part III. Derivatives of quinhydrone.,” J. Chem. Soc., 63, 1314-1327 (1893).
A. V. Trask, N. Shan, W. D. S. Motherwell, W. Jones, S. Feng, R. B. H. Tan, and K. J. Carpenter, “Selective Polymorph Transformation via Solvent-drop Grinding,”Chem. Commun., (7), 880-882 (2005).
A. V. Trask, J. van de Streek, W. D. Samuel Motherwell, and W. Jones, “Achieving Polymorphic and Stoichiometric Diversity in Co-crystal Formation: Importance of Solid-State Grinding, Powder X-ray Structure Determination, and Seeding,” Crys. Growth Des., 5(6), 2233-2241 (2005).
N. Blagden, D. J. Berry, A. Parkin, H. Javed, A. Ibrahim, P. T. Gavan, L. L. De Matos and C. C. Seaton, “Current Directions in Co-crystal Growth,” New J. Chem., 32(10), 1659-1672 (2008).
N. Shan, F. Toda, and W. Jones, “Mechanochemistry and Co-crystal Formation: Effect of Solvents on Reaction Kinetics,” Chem. Commun., (20), 2372-2373 (2002).
T. Fris ̌c ̌ic ́, and W. Jones, “Recent Advances in Understanding the Mechanism of Cocrystal Formation via Grinding,” Crys. Growth Des., 9(3), 1621-1637 (2009).
A. V. Trask, W. D. Samuel Motherwell, and W. Jones, “Pharmaceutical Cocrystallization: Engineering a Remedy for Caffeine Hydration,” Crys. Growth Des., 5(3), 1013-1021 (2005).
A. V. Trask, and W. Jones, “Crystal Engineering of Organic Cocrystals by the Solid-State Grinding Approach,” Top Curr. Chem., 254, 41-70 (2005).
M. Perakyla, “A Model Study of the Enzyme-Catalyzed Cytosine Methylation Using ab Initio Quantum Mechanical and Density Functional Theory Calculations: pKa of the Cytosine N3 in the Intermediates and Transition States of the Reaction,” J. Am. Chem. Soc., 120(49), 12895-12902 (1998).
M. A. Zolfigol, “An Efficient and Chemoselective Method for Oximination of β-Diketones Under Mild and Heterogeneous Conditions,” Molecules, 6(8), 694-698 (2001).
T. J. Strathmann, and S. C. B. Mayneni, “Speciation of Aqueous Ni(II)-Carboxylate and Ni(II)-Fulvic Acid Solutions: Combined ATR-FTIR and XAFS analysis,” Geochim. Cosmochim. Acta, 68(17), 3441-3458 (2004).
H. Thakuria, B. M. Borah, A. Pramanik, and G. Das, “Solid State Synthesis and Hierarchical Supramolecular Self-assembly of Organic Salt Cocrystals,” J. Chem. Crystallogr., 37(12), 807-816 (2007).
F. G. Vogt, J. S. Clawson, M. Strohmeier, A. J. Edwards, T. N. Pham, and S. A. Watson, “Solid-State NMR Analysis of Organic Cocrystals and Complexes,” Cryst. Growth Des., 9(2), 921-937 (2009).
S. L. Child, G. Patrick Stahly, and A. Park, “The Salt-Cocrystal Continuum: The Influence of Crystal Structure on Ionization State,” Mol. Pharmaceutics, 4(3), 323-338 (2007).
S. L. Johnson, and K. A. Rumon, “Infrared Spectra of Solid 1:1 Pyridine-Benzoic Acid Complexes; the Nature of the Hydrogen Bond as a Function of the Acid-Base Levels in the Complex,” J. Phys. Chem., 69(1), 74-86 (1965).
N. B. Colthup, L. H. Daly, and S. E. Wiberley, “Carbonyl Compounds,” Chapter 9 of “Introduction to infrared and Raman spectroscopy,” 3rd Ed., (Axademic Press Inc., New York, USA, 1990), pp. 315,318.
G. Smith, D. E. Lynch, K. A. Byriel, and C. H. L. Kennard, “The Utility of 4-Aminobenzoic Acid in Promotion of Hydrogen Bonding in Crystallization Process: the Structures of the Cocrystals with Halo and Nitro Substituted Aromatic Compounds, and the Crystal Structures of the Adducts with 4-Nitroniline (1:1), 4-(4-Nitrobenzyl)pyridine (1:2), and (4-Nitrophenyl)acetic acid (1:1),” J. Chem. Crystallogr., 27(5), 307-317 (1997).
C. B. Aakeroy, J. Desper, and M. E. Fasulo, “Improving Success Rate of Hydrogen-Bond Driven Synthesis of Co-crystals,” CystEngComm, 8(8), 586-588 (2006).
N. B. Colthup, L. H. Daly, and S. E. Wiberley, “Amines, C=N, and N=O Compounds,” Chapter 11 of “Introduction to infrared and Raman spectroscopy,” 3rd Ed., (Axademic Press Inc., New York, USA, 1990), pp, 340,388.
K. Ataka, and M. Osawa, “In Situ Infrared Study of Cytosine Adsorption on Gold Electrodes,” J. Electroanal. Chem., 460(1), 188-196 (1999).
R. Gobetto, C. Nervi, E. Valfre, M. R. Chierotti, D. Braga, L. Maini, F. Grepioni, R. K. Harris, and P. Y. Ghi,“1H MAS, 15N CPMAS, and DFT Investigation of Hydrogen-Bonded Supramolecular Adducts between the Diamine 1,4-Diazabicyclo-[2.2.2]octane and Dicarboxylic Acids of Variable Chain Length,” Chem. Mater., 17(6), 1457-1466 (2005).
N. Schultheiss, and A. Newman, “Pharmaceutical Cocrystals and Their Physicochemical Properties,” Cryst. Growth Des., 9(6), 2950-2967 (2009).
B. Furtig, C. Richter, J. Wohnert, and H. Schwalbe, “NMR spectroscopy of RNA,” ChemBioChem, 4(10), 936-962 (2003).
J. S. Clawson, F. G. Vogt, J. Brum, J. Sisko, D. B. Patience, W. Dai, S. Sharpe, A. D. Jones, T. N. Pham, M. N. Johnson, and R. C. P. Copley, “Formation and Characterization of Crystals Containing a Pleuromutilin Derivative, Succinic Acid and Water,” Cryst. Growth Des., 8(11), 4120-4131 (2008).
E. Breitmaier, and W. Voelter, “Carbonyl Compounds,” Chapter 4 of “Carbon-13 NMR spectroscopy,” 3rd Ed., (VCH, New York, USA, 1987), p.226.
K. Bouchmella, S. G. Dutremez, B. Alonso, F. Mauri, and C. Gervais, “1H, 13C, and 15N Solid-State NMR Studies of Imidazole- and Morpholine-Based Model Compounds Possessing Halogen and Hydrogen Bonding Capabilities,” Cryst. Growth Des., 8(11), 3941-3950 (2008).
R. Gobetto, C. Nervi, M. R. Chierotti, D. Braga, L. Maini, F. Grepioni, R. K. Harris, and P. Hodgkinson, “Hydrogen Bonding and Dynamic Behavior in Crystals and Polymorphs of Dicarboxylic-Diamine Adducts: A Comparison between NMR Parameters and X-ray Diffraction Studies,” Chem. Eur. J., 11(24), 7461-7471 (2005).
J. Florian, V. Baumruk, and J. Leszczynski, “IR and Raman Spectra, Tautomeric Stabilities, and Scaled Quantum Mechanical Force Fields of Protonated Cytosine,” J. Phys. Chem., 100(13), 5578-5589 (1996).
W. Saenger, “Forces Stabilizing Associations Between Bases: Hydrogen Bonding and Base Stacking,” Chapter 6 of “Principles of Nucleic Acid Structure,” (Springer-Verlag, New York, USA, 1984), pp. 118-124.
A. Jayasankar, L. Sreenivas Reddy, S. J. Bethune, and N. Rodríguez-Hornedo, “Role of Cocrystal and Solution Chemistry on the Formation and Stability of Cocrystals with Different Stoichiometry,” Cryst. Growth Des., 9(2), 889-897 (2009).
S. J. Nehm, B. Rodríguez-Spong, and N. Rodríguez-Hornedo, “Phase Solubility Diagrams of Cocrystals Are Explained by Solubility Product and Solution Complexation,” Cryst. Growth Des., 6(2), 592-600 (2006).
指導教授 李度(Tu Lee) 審核日期 2010-6-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明